Masked-attention Mask Transformer for Universal Image Segmentation

被引:1023
|
作者
Cheng, Bowen [1 ,2 ]
Misra, Ishan [1 ]
Schwing, Alexander G. [2 ]
Kirillov, Alexander [1 ]
Girdhar, Rohit [1 ]
机构
[1] Facebook AI Res FAIR, Menlo Pk, CA 94025 USA
[2] Univ Illinois Urbana Champaign UIUC, Champaign, IL 61820 USA
关键词
D O I
10.1109/CVPR52688.2022.00135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation groups pixels with different semantics, e.g., category or instance membership. Each choice of semantics defines a task. While only the semantics of each task differ, current research focuses on designing specialized architectures for each task. We present Masked-attention Mask Transformer (Mask2Former), a new architecture capable of addressing any image segmentation task (panoptic, instance or semantic). Its key components include masked attention, which extracts localized features by constraining cross-attention within predicted mask regions. In addition to reducing the research effort by at least three times, it outperforms the best specialized architectures by a significant margin on four popular datasets. Most notably, Mask2Former sets a new state-of-the-art for panoptic segmentation (57.8 PQ on COCO), instance segmentation (50.1 AP on COCO) and semantic segmentation (57.7 mIoU on ADE20K).
引用
收藏
页码:1280 / 1289
页数:10
相关论文
共 50 条
  • [1] MATIS: MASKED-ATTENTION TRANSFORMERS FOR SURGICAL INSTRUMENT SEGMENTATION
    Ayobi, Nicolas
    Perez-Rondon, Alejandra
    Rodriguez, Santiago
    Arbelaez, Pablo
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [2] EEND-M2F: Masked-attention mask transformers for speaker diarization
    Harkonen, Marc
    Broughton, Samuel J.
    Samarakoon, Lahiru
    INTERSPEECH 2024, 2024, : 37 - 41
  • [3] Masked-attention diffusion guidance for spatially controlling text-to-image generation
    Endo, Yuki
    VISUAL COMPUTER, 2024, 40 (09): : 6033 - 6045
  • [4] Enhancing Semantically Masked Transformer With Local Attention for Semantic Segmentation
    Xia, Zhengyu
    Kim, Joohee
    IEEE ACCESS, 2023, 11 : 122345 - 122356
  • [5] COM: Contrastive Masked-attention model for incomplete multimodal learning
    Qian, Shuwei
    Wang, Chongjun
    NEURAL NETWORKS, 2023, 162 : 443 - 455
  • [6] Mask2Anomaly: Mask Transformer for Universal Open-Set Segmentation
    Rai, Shyam Nandan
    Cermelli, Fabio
    Caputo, Barbara
    Masone, Carlo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9286 - 9302
  • [7] OneFormer: One Transformer to Rule Universal Image Segmentation
    Jain, Jitesh
    Li, Jiachen
    Chiu, MangTik
    Hassani, Ali
    Orloy, Nikita
    Shi, Humphrey
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2989 - 2998
  • [8] De-noising mask transformer for referring image segmentation
    Wang, Yehui
    Lei, Fang
    Wang, Baoyan
    Zhang, Qiang
    Zhen, Xiantong
    Zhang, Lei
    IMAGE AND VISION COMPUTING, 2025, 154
  • [9] MaskDGNets: Masked-attention guided dynamic graph aggregation network for event extraction
    Zhang, Guangwei
    Xie, Fei
    Yu, Lei
    PLOS ONE, 2024, 19 (11):
  • [10] Mask-Attention-Free Transformer for 3D Instance Segmentation
    Lai, Xin
    Yuan, Yuhui
    Chu, Ruihang
    Chen, Yukang
    Hu, Han
    Jia, Jiaya
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3670 - 3680