On the perturbation of the Moore-Penrose inverse of a matrix

被引:1
|
作者
Xu, Xuefeng [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Moore-Penrose inverse; Perturbation; Singular value decomposition; BOUNDS;
D O I
10.1016/j.amc.2019.124920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Moore-Penrose inverse of a matrix has been extensively investigated and widely applied in many fields over the past decades. One reason for the interest is that the Moore-Penrose inverse can succinctly express some important geometric constructions in finite-dimensional spaces, such as the orthogonal projection onto a subspace and the linear least squares problem. In this paper, we establish new perturbation bounds for the Moore-Penrose inverse under the Frobenius norm, some of which are sharper than the existing ones. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The Moore-Penrose inverse of a companion matrix
    Patricio, Pedro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) : 870 - 877
  • [2] MOORE-PENROSE INVERSE OF A SYMMETRICAL MATRIX
    ABDULLAH, J
    NEUDECKER, H
    SHUANGZHE, L
    ECONOMETRIC THEORY, 1993, 9 (04) : 703 - 703
  • [3] On the Moore-Penrose generalized inverse matrix
    Rakha, MA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) : 185 - 200
  • [4] Expression for the perturbation of the weighted Moore-Penrose inverse
    Wei, YM
    Wu, HB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) : 13 - 18
  • [5] The moore-penrose inverse of a free matrix
    Britz, Thomas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 208 - 215
  • [6] THE MOORE-PENROSE INVERSE OF A SYMMETRICAL MATRIX
    TRENKLER, G
    MAGNUS, JR
    ECONOMETRIC THEORY, 1992, 8 (04) : 585 - 586
  • [7] Expression for the multiplicative perturbation of the Moore-Penrose inverse
    Deng, Chunyuan
    Liu, Rufang
    Wang, Xiunan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06): : 1171 - 1185
  • [8] Perturbation bounds for the Moore-Penrose inverse of operators
    Liu, Xiaoji
    Qin, Yonghui
    Cvetkovic-Ilic, Dragana S.
    FILOMAT, 2012, 26 (02) : 353 - 362
  • [9] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [10] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186