Predicting disease progression and mortality in metastatic colorectal cancer patients (mCRC) through an artificial intelligence-based analytical tool.

被引:0
|
作者
Maria Galmarini, Carlos [1 ]
Lucius, Maximiliano [1 ]
机构
[1] Topazium Artificial Intelligence, Madrid, Spain
关键词
D O I
10.1200/JCO.2021.39.15_suppl.1549
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
1549
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Detecting panitumumab/FOLFOX responders in K-Ras wildtype metastatic colorectal cancer through an artificial intelligence-based analytical tool
    Galmarini, C.
    Lucius, M.
    ANNALS OF ONCOLOGY, 2021, 32 : S145 - S145
  • [2] Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
    Wulczyn, Ellery
    Nagpal, Kunal
    Symonds, Matthew
    Moran, Melissa
    Plass, Markus
    Reihs, Robert
    Nader, Farah
    Tan, Fraser
    Cai, Yuannan
    Brown, Trissia
    Flament-Auvigne, Isabelle
    Amin, Mahul B.
    Stumpe, Martin C.
    Muller, Heimo
    Regitnig, Peter
    Holzinger, Andreas
    Corrado, Greg S.
    Peng, Lily H.
    Chen, Po-Hsuan Cameron
    Steiner, David F.
    Zatloukal, Kurt
    Liu, Yun
    Mermel, Craig H.
    COMMUNICATIONS MEDICINE, 2021, 1 (01):
  • [3] Influence of not having children on mortality in patients with metastatic (mCRC) colorectal cancer
    Ahmed, S.
    Baig, T.
    Zaidi, A.
    Chalchal, H.
    Haider, K.
    Asif, T.
    Iqbal, N.
    ANNALS OF ONCOLOGY, 2018, 29
  • [4] Assessing Usability and Clinical Utility of GLANCE, an Artificial Intelligence-based Tool for Predicting Glaucoma Visual Field Progression
    Lieu, Alexander
    van den Brandt, Astrid
    Christopher, Mark
    Welsbie, Derek Stuart
    Do, Jiun Lap
    Camp, Andrew
    Moghimi, Sasan
    Baxter, Sally Liu
    Zangwill, Linda M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [5] An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer
    Chen, Qicong
    Cai, Ming
    Fan, Xinjuan
    Liu, Wenbin
    Fang, Gang
    Yao, Su
    Xu, Yao
    Li, Qian
    Zhao, Yingnan
    Zhao, Ke
    Liu, Zaiyi
    Chen, Zhihua
    BMC CANCER, 2023, 23 (01)
  • [6] An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer
    Qicong Chen
    Ming Cai
    Xinjuan Fan
    Wenbin Liu
    Gang Fang
    Su Yao
    Yao Xu
    Qian Li
    Yingnan Zhao
    Ke Zhao
    Zaiyi Liu
    Zhihua Chen
    BMC Cancer, 23
  • [7] Artificial intelligence-based colorectal cancer screening using urinary polyamines
    Sugimoto, Masahiro
    CANCER SCIENCE, 2018, 109 : 1125 - 1125
  • [8] Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients
    Sirinukunwattana, Korsuk
    Aberdeen, Alan
    Theissen, Helen
    Sousos, Nikolaos
    Psaila, Bethan
    Mead, Adam J.
    Turner, Gareth D. H.
    Rees, Gabrielle
    Rittscher, Jens
    Royston, Daniel
    BLOOD ADVANCES, 2020, 4 (14) : 3284 - 3294
  • [9] Artificial Intelligence-Based Tool for Tumor Detection and Quantitative Tissue Analysis in Colorectal Specimens
    Griem, Johanna
    Eich, Marie-Lisa
    Schallenberg, Simon
    Pryalukhin, Alexey
    Bychkov, Andrey
    Fukuoka, Junya
    Zayats, Vitaliy
    Hulla, Wolfgang
    Munkhdelger, Jijgee
    Seper, Alexander
    Tsvetkov, Tsvetan
    Mukhopadhyay, Anirban
    Sanner, Antoine
    Stieber, Jonathan
    Fuchs, Moritz
    Babendererde, Niklas
    Schoemig-Markiefka, Birgid
    Klein, Sebastian
    Buettner, Reinhard
    Quaas, Alexander
    Tolkach, Yuri
    MODERN PATHOLOGY, 2023, 36 (12)
  • [10] Predicting T-cell quality during manufacturing through an artificial intelligence-based integrative multiomics analytical platform
    Odeh-Couvertier, Valerie Y.
    Dwarshuis, Nathan J.
    Colonna, Maxwell B.
    Levine, Bruce L.
    Edison, Arthur S.
    Kotanchek, Theresa
    Roy, Krishnendu
    Torres-Garcia, Wandaliz
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2022, 7 (02)