Understanding the significance of sulfur in improving salinity tolerance in plants

被引:119
|
作者
Nazar, Rahat [1 ]
Iqbal, Noushina [1 ]
Masood, Asim [1 ]
Syeed, Shabina [1 ]
Khan, Nafees A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Bot, Aligarh 202002, Uttar Pradesh, India
关键词
Salinity stress; Antioxidants; Sulfur; Mineral nutrients; CYTOSOLIC O-ACETYLSERINE(THIOL)LYASE GENE; ADENOSINE 5-PHOSPHOSULFATE REDUCTASE; OXIDATIVE STRESS-RESPONSE; SULFATE ASSIMILATION; ATP-SULFURYLASE; SALT STRESS; REACTIVE OXYGEN; ARABIDOPSIS-THALIANA; ABIOTIC STRESS; PHYSIOLOGICAL-RESPONSES;
D O I
10.1016/j.envexpbot.2010.09.011
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is a major abiotic stress factor affecting plant growth and productivity worldwide. The salinity-induced reduction in photosynthesis, growth and development of plants is associated with ionic/osmotic effects, nutritional imbalance or oxidative stress. Plants develop several mechanisms to induce tolerance to overcome salinity effects. Of the several possible mechanisms to reduce the effects of salinity stress, management of mineral nutrients status of plants can be the efficient defense system. Sulfur (S) is an important plant nutrient involved in plant growth and development. It is considered fourth in importance after nitrogen, phosphorus, and potassium. It is an integral part of several important compounds, such as vitamins, co-enzymes, phytohormones and reduced sulfur compounds that decipher growth and vigor of plants under optimal and stress conditions. The present review focuses on improving our understanding on the salinity effects on physiology and metabolism of plants and the importance of sulfur in salinity tolerance. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 50 条
  • [1] Understanding and improving salt tolerance in plants
    Chinnusamy, V
    Jagendorf, A
    Zhu, JK
    CROP SCIENCE, 2005, 45 (02) : 437 - 448
  • [2] Improving salinity tolerance in crop plants: a biotechnological view
    Ahmad Arzani
    In Vitro Cellular & Developmental Biology - Plant, 2008, 44 : 373 - 383
  • [4] SULFUR: A MACRONUTRIENT HAVING POTENTIAL TO IMPROVE SALINITY TOLERANCE IN PLANTS
    Riffat, Alia
    Ahmad, Nauman
    Ahmad, Muhammad Sajid Aqeel
    Alvi, Ambreen Khadija
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (04) : 1321 - 1333
  • [5] Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review
    Singh, Madhulika
    Kumar, Jitendra
    Singh, Samiksha
    Singh, Vijay Pratap
    Prasad, Sheo Mohan
    REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2015, 14 (03) : 407 - 426
  • [6] Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants
    Nongpiur, Ramsong Chantre
    Singla-Pareek, Sneh Lata
    Pareek, Ashwani
    CURRENT GENOMICS, 2016, 17 (04) : 343 - 357
  • [7] Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review
    Madhulika Singh
    Jitendra Kumar
    Samiksha Singh
    Vijay Pratap Singh
    Sheo Mohan Prasad
    Reviews in Environmental Science and Bio/Technology, 2015, 14 : 407 - 426
  • [8] Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants
    Rahman, Md Mezanur
    Mostofa, Mohammad Golam
    Keya, Sanjida Sultana
    Siddiqui, Md Nurealam
    Ansary, Md Mesbah Uddin
    Das, Ashim Kumar
    Rahman, Md Abiar
    Tran, Lam Son-Phan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [9] Understanding the physiological and molecular mechanism of salinity stress tolerance in plants
    Anwar, Ali
    Zhang, Shu
    He, Lilong
    Gao, Jianwei
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (04)
  • [10] Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants
    Basu, Sahana
    Kumar, Alok
    Benazir, Ibtesham
    Kumar, Gautam
    PHYSIOLOGIA PLANTARUM, 2021, 171 (04) : 502 - 519