Loewy Modules with Finite Loewy Invariants and Max Modules with Finite Radical Invariants

被引:1
|
作者
Facchini, Alberto [1 ]
Mai Hoang Bien [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Endomorphism ring; Loewy module; Max module; Module; Semilocal ring;
D O I
10.1080/00927872.2014.891604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over a commutative ring R, a module is artinian if and only if it is a Loewy module with finite Loewy invariants [5]. In this paper, we show that this is not necesarily true for modules over noncommutative rings R, though every artinian module is always a Loewy module with finite Loewy invariants. We prove that every Loewy module with finite Loewy invariants has a semilocal endomorphism ring, thus generalizing a result proved by Camps and Dicks for artinian modules [3]. Finally, we obtain similar results for the dual class of max modules.
引用
收藏
页码:2293 / 2307
页数:15
相关论文
共 50 条