Multi-Model Forecast Quality Assessment of CMIP6 Decadal Predictions

被引:24
|
作者
Delgado-Torres, Carlos [1 ]
Donat, Markus G. [1 ,2 ]
Gonzalez-Reviriego, Nube [1 ]
Caron, Louis-Philippe [1 ,3 ]
Athanasiadis, Panos J. [4 ]
Bretonniere, Pierre-Antoine [1 ]
Dunstone, Nick J. [5 ]
Ho, An-Chi [1 ]
Nicoli, Dario [4 ]
Pankatz, Klaus [6 ]
Paxian, Andreas [6 ]
Perez-Zanon, Nuria [1 ]
Samso Cabre, Margarida [1 ]
Solaraju-Murali, Balakrishnan [1 ]
Soret, Albert [1 ]
Doblas-Reyes, Francisco J. [1 ,2 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona, Spain
[2] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
[3] Ouranos, Montreal, PQ, Canada
[4] Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy
[5] Hadley Ctr, Met Off, Exeter, Devon, England
[6] Deutsch Wetterdienst, Business Area Climate & Environm, Offenbach, Germany
关键词
Climate prediction; Ensembles; Forecast verification/skill; Hindcasts; Probability forecasts/models/; distribution; Decadal variability; Climate services; NORTH-ATLANTIC OSCILLATION; CLIMATE PREDICTION; MULTIANNUAL FORECASTS; BIAS CORRECTION; FULL-FIELD; SKILL; INITIALIZATION; VERSION; SYSTEM; VARIABILITY;
D O I
10.1175/JCLI-D-21-0811.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Decadal climate predictions are a relatively new source of climate information for interannual to decadal time scales, which is of increasing interest for users. Forecast quality assessment is essential to identify windows of opportunity (e.g., variables, regions, and forecast periods) with skill that can be used to develop climate services to inform users in several sectors and define benchmarks for improvements in forecast systems. This work evaluates the quality of multi-model forecasts of near-surface air temperature, precipitation, Atlantic multidecadal variability index (AMV), and global near-surface air temperature (GSAT) anomalies generated from all the available retrospective decadal predictions contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6). The predictions generally show high skill in predicting temperature, AMV, and GSAT, while the skill is more limited for precipitation. Different approaches for generating a multi-model forecast are compared, finding small differences between them. The multi-model ensemble is also compared to the individual forecast systems. The best system usually provides the highest skill. However, the multi-model ensemble is a reasonable choice for not having to select the best system for each particular variable, forecast period, and region. Furthermore, the decadal predictions are compared to the historical simulations to estimate the impact of initialization. An added value is found for several ocean and land regions for temperature, AMV, and GSAT, while it is more reduced for precipitation. Moreover, the full ensemble is compared to a subensemble to measure the impact of the ensemble size. Finally, the implications of these results in a climate services context, which requires predictions issued in near-real time, are discussed.
引用
收藏
页码:4363 / 4382
页数:20
相关论文
共 50 条
  • [1] Impact of volcanic eruptions on CMIP6 decadal predictions: a multi-model analysis
    Bilbao, Roberto
    Ortega, Pablo
    Swingedouw, Didier
    Hermanson, Leon
    Athanasiadis, Panos
    Eade, Rosie
    Devilliers, Marion
    Doblas-Reyes, Francisco
    Dunstone, Nick
    Ho, An-Chi
    Merryfield, William
    Mignot, Juliette
    Nicoli, Dario
    Samso, Margarida
    Sospedra-Alfonso, Reinel
    Wu, Xian
    Yeager, Stephen
    EARTH SYSTEM DYNAMICS, 2024, 15 (02) : 501 - 525
  • [2] An assessment of a multi-model ensemble of decadal climate predictions
    Bellucci, A.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, M.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, K.
    Yang, S.
    CLIMATE DYNAMICS, 2015, 44 (9-10) : 2787 - 2806
  • [3] An assessment of a multi-model ensemble of decadal climate predictions
    A. Bellucci
    R. Haarsma
    S. Gualdi
    P. J. Athanasiadis
    M. Caian
    C. Cassou
    E. Fernandez
    A. Germe
    J. Jungclaus
    J. Kröger
    D. Matei
    W. Müller
    H. Pohlmann
    D. Salas y Melia
    E. Sanchez
    D. Smith
    L. Terray
    K. Wyser
    S. Yang
    Climate Dynamics, 2015, 44 : 2787 - 2806
  • [4] Assessment of CMIP6 models and multi-model averaging for temperature and precipitation over Iran
    Azad, Narges
    Ahmadi, Azadeh
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Evaluation of the CMIP6 multi-model ensemble for climate extreme indices
    Kim, Yeon-Hee
    Min, Seung-Ki
    Zhang, Xuebin
    Sillmann, Jana
    Sandstad, Marit
    WEATHER AND CLIMATE EXTREMES, 2020, 29
  • [6] Multi-Model Assessment of Future Hydrogen Soil Deposition and Lifetime Using CMIP6 Data
    Brown, M. A. J.
    Warwick, N. J.
    Archibald, A. T.
    GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (07)
  • [7] The effectiveness of machine learning-based multi-model ensemble predictions of CMIP6 in Western Ghats of India
    Shetty, Swathi
    Umesh, Pruthviraj
    Shetty, Amba
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2023, 43 (11) : 5029 - 5054
  • [8] Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles
    Ha, Subin
    Zhou, Zixuan
    Im, Eun-Soon
    Lee, Young-Mi
    RENEWABLE ENERGY, 2023, 206 : 324 - 335
  • [9] Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6
    Borchert, Leonard F.
    Menary, Matthew B.
    Swingedouw, Didier
    Sgubin, Giovanni
    Hermanson, Leon
    Mignot, Juliette
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (03)
  • [10] Assessment of the Decadal Prediction Skill of Sahel Rainfall in CMIP5 and CMIP6
    He, Yujun
    Wang, Bin
    Liu, Juanjuan
    Wang, Yong
    Li, Lijuan
    Liu, Li
    Xu, Shiming
    Huang, Wenyu
    Lu, Hui
    JOURNAL OF CLIMATE, 2024, 37 (08) : 2471 - 2490