Incorporating signal-dependent noise for hyperspectral target detection

被引:0
|
作者
Morman, Christopher J. [1 ]
Meola, Joseph [2 ]
机构
[1] Univ Dayton, Dayton, OH 45469 USA
[2] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
hyperspectral; target detection; sensor noise;
D O I
10.1117/12.2176391
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Minimizing the Impact of Signal-Dependent Noise on Hyperspectral Target Detection
    Juan, Josselin
    Bourennane, Salah
    Fossati, Caroline
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 : 791 - 802
  • [2] Reduction of Signal-Dependent Noise From Hyperspectral Images for Target Detection
    Liu, Xuefeng
    Bourennane, Salah
    Fossati, Caroline
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5396 - 5411
  • [3] Modeling and estimation of signal-dependent noise in hyperspectral imagery
    Meola, Joseph
    Eismann, Michael T.
    Moses, Randolph L.
    Ash, Joshua N.
    APPLIED OPTICS, 2011, 50 (21) : 3829 - 3846
  • [5] Estimation of correlated signal-dependent noise statistics in hyperspectral images
    Mahmood, Asad
    Sears, Michael
    REMOTE SENSING LETTERS, 2021, 12 (10) : 961 - 969
  • [6] Hyperspectral Signal Subspace Identification in the Presence of Rare Vectors and Signal-Dependent Noise
    Acito, N.
    Diani, M.
    Corsini, G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 283 - 299
  • [7] Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08): : 2957 - 2971
  • [8] Signal-Dependent Noise Parameter Estimation of Hyperspectral Remote Sensing Images
    Sun, Lei
    SPECTROSCOPY LETTERS, 2015, 48 (10) : 717 - 725
  • [9] ESTIMATION IN SIGNAL-DEPENDENT NOISE
    FROEHLICH, GK
    WALKUP, JF
    ASHER, RB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1385 - 1385
  • [10] A COMPOSITE SIGNAL-DETECTION SCHEME IN ADDITIVE AND SIGNAL-DEPENDENT NOISE
    KIM, S
    SONG, I
    KIM, SY
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (10) : 1790 - 1803