This paper reports the results from a medium-term field scale investigation into the effects of simulated climate change on soil N mineralisation in a semi-natural calcareous grassland in southern England. The experiment utilised soil warming cables, automatic rainshelters and a watering system to examine two climate change scenarios: warmer winters with summer drought and warmer winters with enhanced summer rainfall. Gross N mineralisation rates in treated plots were determined, using N-15 pool dilution techniques, at 6-weekly intervals over a 3-year period. Results from control plots showed a strong seasonality of mineralisation with highest rates in autumn and winter and lowest rates in summer. They suggest that water availability is the main constraint on microbial processes and plant growth. Unexpectedly, additional summer rainfall had no direct effect on N mineralisation at the time of application (summer). The treatment did, however, significantly (<0.05%) reduce rates in subsequent autumn and winter months. In contrast, summer drought significantly increased N mineralisation rates in autumn and winter. Winter warming similarly had no direct effect on N mineralisation in winter but decreased rates in spring. We hypothesise that the observed treatment effects result from changes in organic C and N input, in plant litter, resulting from the direct impact of climatic manipulation on perennial plant growth, death and senescence. This paper compares and contrasts the response to climate manipulation in the grassland sq stem with results from other ecosystem types such as northern forests.