Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles

被引:78
|
作者
Ikeda, Yuji [1 ,2 ]
Koermann, Fritz [1 ,3 ]
Tanaka, Isao [2 ,4 ,5 ,6 ]
Neugebauer, Joerg [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Computat Mat Design, D-40237 Dusseldorf, Germany
[2] Kyoto Univ, Mat Sci & Engn, Kyoto 6068501, Japan
[3] Delft Univ Technol, Mat Sci & Engn, NL-2628 CD Delft, Netherlands
[4] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan
[5] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, Tsukuba, Ibaraki 3050047, Japan
[6] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
基金
日本学术振兴会;
关键词
high-entropy alloy; stacking-fault energy; density functional theory; SCREENED COULOMB INTERACTIONS; MECHANICAL-PROPERTIES; TRIP/TWIP STEELS; POTENTIAL MODEL; METALLIC ALLOYS; CRITICAL STRESS; MICROSTRUCTURE; APPROXIMATION; DUCTILE; NUCLEATION;
D O I
10.3390/e20090655
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Medium and high entropy alloys (MEAs and HEAs) based on 3d transition metals, such as face-centered cubic (fcc) CrCoNi and CrMnFeCoNi alloys, reveal remarkable mechanical properties. The stacking fault energy (SFE) is one of the key ingredients that controls the underlying deformation mechanism and hence the mechanical performance of materials. Previous experiments and simulations have therefore been devoted to determining the SFEs of various MEAs and HEAs. The impact of local chemical environment in the vicinity of the stacking faults is, however, still not fully understood. In this work, we investigate the impact of the compositional fluctuations in the vicinity of stacking faults for two prototype fcc MEAs and HEAs, namely CrCoNi and CrMnFeCoNi by employing first-principles calculations. Depending on the chemical composition close to the stacking fault, the intrinsic SFEs vary in the range of more than 150 mJ/m(2) for both the alloys, which indicates the presence of a strong driving force to promote particular types of chemical segregations towards the intrinsic stacking faults in MEAs and HEAs. Furthermore, the dependence of the intrinsic SFEs on local chemical fluctuations reveals a highly non-linear behavior, resulting in a non-trivial interplay of local chemical fluctuations and SFEs. This sheds new light on the importance of controlling chemical fluctuations via tuning, e.g., the annealing condition to obtain the desired mechanical properties for MEAs and HEAs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys
    Ding, Jun
    Yu, Qin
    Asta, Mark
    Ritchie, Robert O.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) : 8919 - 8924
  • [2] Stacking fault energies of high-entropy nitrides from first-principles calculations
    Huang, Haiyun
    Shao, Lihuan
    Liu, Huazhu
    SOLID STATE COMMUNICATIONS, 2021, 327
  • [3] Statistical data set for first-principles calculations of stacking fault energies in an AlNbTaTiV high entropy alloy
    Strother, Joshua D.
    Hargather, Chelsey Z.
    DATA IN BRIEF, 2021, 34
  • [4] A first principles study of the stacking fault energies for fcc Co-based binary alloys
    Tian, Li-Yun
    Lizarraga, Raquel
    Larsson, Henrik
    Holmstrom, Erik
    Vitos, Levente
    ACTA MATERIALIA, 2017, 136 : 215 - 223
  • [5] First-principles study of stacking fault energies in Mg-based binary alloys
    Zhang, Jing
    Dou, Yuchen
    Liu, Guobao
    Guo, Zhengxiao
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 564 - 569
  • [6] Surface interface and stacking fault energies of magnesium from first principles calculations
    Smith, A. E.
    SURFACE SCIENCE, 2007, 601 (24) : 5762 - 5765
  • [7] Thermophysical properties of equiatomic CrMnFeCoNi, CrFeCoNi, CrCoNi, and CrFeNi high- and medium-entropy alloys
    Berger, Aaron
    Benito, Santiago
    Konchits, Andriy
    Laplanche, Guillaume
    Shanina, Bela
    Weber, Sebastian
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [8] A First Principles Study of Stacking Fault and Surface Energies in Magnesium
    Smith, Andrew E.
    Homolya, Steven
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C416 - C416
  • [9] Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy
    Ikeda, Yuji
    Tanaka, Isao
    Neugebauer, Joerg
    Koermann, Fritz
    PHYSICAL REVIEW MATERIALS, 2019, 3 (11)
  • [10] Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles
    Sun, Xun
    Zhang, Hualei
    Lu, Song
    Ding, Xiangdong
    Wang, Yunzhi
    Vitos, Levente
    ACTA MATERIALIA, 2017, 140 : 366 - 374