GLOBAL INTEGRABILITY FOR SOLUTIONS TO BOUNDARY VALUE PROBLEMS OF ANISOTROPIC FUNCTIONALS

被引:0
|
作者
Gao Hongya [1 ]
Liang Shuang [1 ]
Cui Yi [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Peoples R China
关键词
Global integrability; boundary value problem; anisotropic functional; obstacle problem; OBSTACLE PROBLEMS; MINIMIZERS; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with solutions to boundary value problems of anisotropic integral functionals I(u) = integral(Omega) f(x, Du(x))dx with the energy f (x, z) has growth p(i) with respect to z(i), like in integral(Omega) ((1+Sigma(n)(j=1)vertical bar D(j)u vertical bar p(j))(P1-2/p1)vertical bar D(1)u vertical bar(2)+...+(1+Sigma(n)(j=1)vertical bar D(j)u vertical bar p(j))(Pn-2/pn)vertical bar D(n)u vertical bar(2))dx We show that higher integrability of the boundary datum u(*) forces minimizers u to be more integrable. A similar result is obtained for obstacle problems.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [1] Global integrability for minimizers of anisotropic functionals
    Francesco Leonetti
    Francesco Siepe
    Manuscripta Mathematica, 2014, 144 : 91 - 98
  • [2] Global integrability for minimizers of anisotropic functionals
    Leonetti, Francesco
    Siepe, Francesco
    MANUSCRIPTA MATHEMATICA, 2014, 144 (1-2) : 91 - 98
  • [3] Weak solutions for anisotropic discrete boundary value problems
    Kone, Blaise
    Ouaro, Stanislas
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (10) : 1537 - 1547
  • [4] MULTIPLICITY OF SOLUTIONS FOR ANISOTROPIC DISCRETE BOUNDARY VALUE PROBLEMS
    El Amrouss, Abdelrachid
    Hammouti, Omar
    MATEMATICKI VESNIK, 2024, 76 (03): : 185 - 195
  • [5] Integrability for solutions to some anisotropic obstacle problems
    Hongya Gao
    Qinghua Di
    Dongna Ma
    Manuscripta Mathematica, 2015, 146 : 433 - 444
  • [6] Integrability and boundedness of solutions to some anisotropic problems
    Kovalevsky, Alexander A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 820 - 843
  • [7] Integrability for solutions to some anisotropic obstacle problems
    Gao, Hongya
    Di, Qinghua
    Ma, Dongna
    MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) : 433 - 444
  • [8] POSITIVE SOLUTIONS FOR ANISOTROPIC DISCRETE BOUNDARY-VALUE PROBLEMS
    Galewski, Marek
    Glab, Szymon
    Wieteska, Renata
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [9] Global Integrability for Solutions to Obstacle Problems
    Shan Yanan
    Gao Hongya
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (04): : 320 - 330
  • [10] On characterizing integral stopping time functionals on diffusions as solutions to boundary value problems
    Miller, DF
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 205 - 216