Superintegrable systems on a sphere

被引:14
|
作者
Borisov, AV [1 ]
Mamaev, IS [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2005年 / 10卷 / 03期
关键词
spaces of constant curvature; Kepler problem; integrability;
D O I
10.1070/RD2005v010n03ABEH000314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider various generalizations of the Kepler problem to three-dimensional sphere S' (a compact space of constant curvature). In particular, these generalizations include addition of a spherical analogue of the magnetic monopole (the Poincare-Appell system) and addition of a more complicated field which is a generalization of the MICZ-system. The mentioned systems are integrable superintegrable, and there exists the vector integral which is analogous to the Laplace Runge-Lenz vector. We offer a classification of the motions and consider a trajectory isomorphism between planar and spatial motions. The presented results can be easily extended to Lobachevsky space L-3.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 50 条
  • [1] Superintegrable Lissajous systems on the sphere
    J. A. Calzada
    Ş. Kuru
    J. Negro
    The European Physical Journal Plus, 129
  • [2] Superintegrable Lissajous systems on the sphere
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (08): : 1 - 15
  • [3] Superintegrable Extensions of Superintegrable Systems
    Chanu, Claudia M.
    Degiovanni, Luca
    Rastelli, Giovanni
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [4] SUPERINTEGRABLE SYSTEMS
    KUPERSHMIDT, B
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (20): : 6562 - 6563
  • [5] Superintegrable System on a Sphere with the Integral of Higher Degree
    Borisov, A. V.
    Kilin, A. A.
    Mamaev, I. S.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (06): : 615 - 620
  • [6] Symmetry algebra for the generic superintegrable system on the sphere
    Plamen Iliev
    Journal of High Energy Physics, 2018
  • [7] Superintegrable system on a sphere with the integral of higher degree
    A. V. Borisov
    A. A. Kilin
    I. S. Mamaev
    Regular and Chaotic Dynamics, 2009, 14 : 615 - 620
  • [8] Symmetry algebra for the generic superintegrable system on the sphere
    Iliev, Plamen
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [9] On maximally superintegrable systems
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 178 - 190
  • [10] Perturbations of Superintegrable Systems
    Hanssmann, Heinz
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 79 - 95