Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries

被引:89
|
作者
Du, Wencheng [1 ]
Xiao, Jinfei [1 ]
Geng, Hongbo [1 ]
Yang, Yang [1 ]
Zhang, Yufei [1 ]
Ang, Edison Huixiang [2 ]
Ye, Minghui [1 ]
Li, Cheng Chao [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Nat Sci & Sci Educ, Singapore 637616, Singapore
基金
中国国家自然科学基金;
关键词
Polyaniline; Graphene oxide; Doping; Aqueous zinc-ion batteries; Flexible device; ORGANIC DISPERSIONS; CONDUCTING POLYMER; PERFORMANCE; COMPOSITE; CHEMISTRY; FILMS;
D O I
10.1016/j.jpowsour.2020.227716
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) have been of excellent interest in the latest years due to their environmental benignity and easy preparation. One vital barrier to the production of high-performance ZIBs is the development of appropriate cathode materials. Polyaniline (PANT) is very promising, particularly due to its excellent conductivity and easy preparation, among varied cathode materials. However, deprotonation of PANI is a key problem greatly deteriorating capacity and cycling stability of PANI cathode. In this study, we discover that graphene oxide (GO) can fix the problem effectively as the wealthy functional GO oxygen groups can provide a local proton reservoir that increases PANT protonation. As a result, the GO composited PANI electrodes show significantly improved zinc-ion storage performance than pure carbon composited PANI cathodes. Specifically, the battery performances in terms of capacity (233 mA h g(-1)) and rate performance (100 mA h g(-1) under 5 A g(-1)) are enhanced significantly after introducing GO into PANI cathode. Besides, flexible PAM-based ZIB devices can be easily fabricated owing to the excellent film-forming property of GO. This work offers new insight for improving PANI cathode materials by carbon chemistry.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Polyaniline/graphene oxide nanocomposite as an innovative cathode for high energy density aqueous zinc-ion batteries
    Wang, Biao
    Ma, An-ning
    She, Jiaxuan
    Zhao, Ziyao
    Xia, En-Jie
    Deng, Shu-Hao
    ELECTROCHIMICA ACTA, 2024, 506
  • [2] Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries
    Gong, Jiangfeng
    Li, Hao
    Zhang, Kaixiao
    Zhang, Zhupeng
    Cao, Jie
    Shao, Zhibin
    Tang, Chunmei
    Fu, Shaojie
    Wang, Qianjin
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (09)
  • [3] Hydroxylated Manganese Oxide Cathode for Stable Aqueous Zinc-Ion Batteries
    Li, Mengxue
    Liu, Chang
    Meng, Jianming
    Hei, Peng
    Sai, Ya
    Li, Wenjie
    Wang, Jing
    Cui, Weibin
    Song, Yu
    Liu, Xiao-Xia
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
  • [4] Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy
    Qiu, Yu
    Yan, Zhaoqian
    Sun, Zhihao
    Guo, Zihao
    Liu, Hongshou
    Du, Benli
    Tian, Shaoyao
    Wang, Peng
    Ding, Han
    Qian, Lei
    INORGANICS, 2023, 11 (03)
  • [5] Graphene Oxide Wrapped ZnMnO3 Nanorod as Advanced Cathode for Aqueous Zinc-Ion Batteries
    Fan, Zixuan
    Liu, Xinyu
    Qian, Jinchen
    Tang, Jun
    Yu, Jin
    He, Wei
    Sun, Zheng Ming
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [6] Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries
    Pan, Qing
    Dong, Ran
    Lv, Huizhen
    Sun, Xiaoqi
    Song, Yu
    Liu, Xiao-Xia
    CHEMICAL ENGINEERING JOURNAL, 2021, 419
  • [7] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [8] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [9] Achieving fast ion diffusion in aqueous zinc-ion batteries by cathode reconstruction design
    He, Weidong
    Meng, Chao
    Ai, Zizheng
    Xu, Deqin
    Liu, Shengfu
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [10] Macroporous vanadium dioxide-reduced graphene oxide microspheres: Cathode material with enhanced electrochemical kinetics for aqueous zinc-ion batteries
    Choi, Jae Hun
    Park, Jin-Sung
    Kang, Yun Chan
    APPLIED SURFACE SCIENCE, 2022, 599