Prognostic Methods for Predictive Maintenance: A generalized Topology

被引:3
|
作者
Leohold, Simon [1 ]
Engbers, Hendrik [1 ]
Freitag, Michael [1 ,2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Bremen, Germany
[2] Univ Bremen, Fac Prod Engn, Bremen, Germany
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 01期
关键词
Prognostics; Predictive Maintenance; Condition Monitoring; Remaining Useful Lifetime Estimation; Machine Learning; SYSTEM;
D O I
10.1016/j.ifacol.2021.08.073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prognostic methods for predictive maintenance have been presented extensively in the literature. While this area's continuing effort positively affects individual predictive maintenance solutions' performance and capabilities, a method's setup remains a big hurdle as the solution space is becoming more complex. The critical settings of a prognostic method are the selection of suitable modeling techniques used for behavior- and condition-modeling, as well as a forecast model for failure prediction. This paper presents a generalized topology of a prognostic method to ease the design of maintenance systems and allow for quicker individual method design and modification. After a broad literature review, the topology and its base components are presented, and an overview of the different kinds of models related to predictive maintenance applications is given. Copyright (C) 2021 The Authors.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [1] Predictive Maintenance Methods
    Jenkins, Scott
    Chemical Engineering (United States), 2022, 129 (04):
  • [2] Thanks to a new Topology for true Predictive Maintenance
    Linchevski, Chen
    Widl, Andreas
    Steckenreiter, Thomas
    ATP MAGAZINE, 2018, (08): : 78 - 80
  • [3] A general prognostic tracking algorithm for predictive maintenance
    Swanson, DC
    2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 2971 - 2977
  • [4] A generalized predictive analysis tool for multigrid methods
    Friedhoff, S.
    MacLachlan, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) : 618 - 647
  • [5] A Smart Predictive Maintenance Scheme for Classifying Diagnostic and Prognostic Statuses
    Palembiya, Revi Asprila
    Setiawan, Muhammad Nanda
    Gultom, Elnora Oktaviyani
    Prayitno, Adila Sekarratri Dwi
    Kurniati, Nani
    Iqbal, Mohammad
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 104 - 117
  • [6] Predictive Maintenance 2.0 - What's behind Prognostic Foresight
    von Plate, Moritz
    Ehrle, Reinhold
    Diewald, Christian
    ATP MAGAZINE, 2018, (10): : 36 - 40
  • [7] Review of forecasting methods to support photovoltaic predictive maintenance
    Ramirez-Vergara, Jose
    Bosman, Lisa B.
    Wollega, Ebisa
    Leon-Salas, Walter D.
    CLEANER ENGINEERING AND TECHNOLOGY, 2022, 8
  • [8] Motor Classification with Machine Learning Methods for Predictive Maintenance
    Kammerer, Christoph
    Gaust, Michael
    Kuestner, Micha
    Starke, Pascal
    Radtke, Roman
    Jesser, Alexander
    IFAC PAPERSONLINE, 2021, 54 (01): : 1059 - 1064
  • [9] Predictive Maintenance: Predictive Maintenance of Valves
    Rasbach, Tobias
    Schneckenburger, Udo
    ATP MAGAZINE, 2020, (1-2): : 52 - 54
  • [10] Predictive Validity of Two Prognostic Indices for Generalized Anxiety Disorder
    Durham, Robert C.
    Chambers, Julie A.
    Macdonald, Ranald R.
    Fisher, Peter L.
    INTERNATIONAL JOURNAL OF COGNITIVE THERAPY, 2009, 2 (04): : 383 - 399