Point Cloud Data Registration Based on Binary Feature Descriptors

被引:1
|
作者
Cai Wei [1 ]
Yue Dongjie [1 ]
Chen Qiang [2 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
[2] Shanghai Inst Surveying & Mapping, Branch 3, Shanghai 200063, Peoples R China
关键词
machine vision; binary shape context algorithm; Hamming distance; point cloud registration; feature matching; iterative closest point algorithm; SHAPE CONTEXT; HISTOGRAMS; SURFACE; SHOT;
D O I
10.3788/LOP202259.1015010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional feature descriptors of point cloud data show disadvantages such as insufficient expressiveness, low computational efficiency, and poor robustness. Aiming at the problem that the binary shape context (BSC) feature descriptors, regions with a large curvature distribution cannot be effectively detected and the ambiguity of the local coordinate system suffers. This study proposes a point cloud data registration algorithm based on binary feature descriptors. First, the intrinsic shape signature keypoint detection method and three-dimensional surface patch estimation method are used to address the problem of semantics. Then, the Hamming distance and improved geometric consistency method are used for feature matching. Finally, the random sampling consensus is used to eliminate false matches. Experimental results show that compared with the fast point feature histogram, signature of histogram of orientations, and BSC algorithms, combining the algorithm with the iterative closest point algorithm can considerably improve the registration efficiency and reduce the registration error.
引用
收藏
页数:8
相关论文
共 18 条
  • [1] Besl PJ, 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence, V14, P239, DOI [10.1109/34.121791, DOI 10.1109/34.121791]
  • [2] Bo Yang, 2020, MUM 2020: 19th International Conference on Mobile and Ubiquitous Multimedia, P335, DOI 10.1145/3428361.3432075
  • [3] 3D registration by textured spin-images
    Brusco, N
    Andreetto, M
    Giorgi, A
    Cortelazzo, GM
    [J]. FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, : 262 - 269
  • [4] A novel binary shape context for 3D local surface description
    Dong, Zhen
    Yang, Bisheng
    Liu, Yuan
    Liang, Fuxun
    Li, Bijun
    Zang, Yufu
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 : 431 - 452
  • [5] Lei Y Z, 2013, ACTA OPT SIN, V33
  • [6] Antibody responses to SARS-CoV-2 in patients with COVID-19
    Long, Quan-Xin
    Liu, Bai-Zhong
    Deng, Hai-Jun
    Wu, Gui-Cheng
    Deng, Kun
    Chen, Yao-Kai
    Liao, Pu
    Qiu, Jing-Fu
    Lin, Yong
    Cai, Xue-Fei
    Wang, De-Qiang
    Hu, Yuan
    Ren, Ji-Hua
    Tang, Ni
    Xu, Yin-Yin
    Yu, Li-Hua
    Mo, Zhan
    Gong, Fang
    Zhang, Xiao-Li
    Tian, Wen-Guang
    Hu, Li
    Zhang, Xian-Xiang
    Xiang, Jiang-Lin
    Du, Hong-Xin
    Liu, Hua-Wen
    Lang, Chun-Hui
    Luo, Xiao-He
    Wu, Shao-Bo
    Cui, Xiao-Ping
    Zhou, Zheng
    Zhu, Man-Man
    Wang, Jing
    Xue, Cheng-Jun
    Li, Xiao-Feng
    Wang, Li
    Li, Zhi-Jie
    Wang, Kun
    Niu, Chang-Chun
    Yang, Qing-Jun
    Tang, Xiao-Jun
    Zhang, Yong
    Liu, Xia-Mao
    Li, Jin-Jing
    Zhang, De-Chun
    Zhang, Fan
    Liu, Ping
    Yuan, Jun
    Li, Qin
    Hu, Jie-Li
    Chen, Juan
    [J]. NATURE MEDICINE, 2020, 26 (06) : 845 - +
  • [7] Ma G Q, 2019, CHINESE J LASERS, V46
  • [8] Mori G, 2002, LECT NOTES COMPUT SC, V2352, P666
  • [9] B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds
    Prakhya, Sai Manoj
    Liu, Bingbing
    Lin, Weisi
    Jakhetiya, Vinit
    Guntuku, Sharath Chandra
    [J]. AUTONOMOUS ROBOTS, 2017, 41 (07) : 1501 - 1520
  • [10] 3DHoPD: A Fast Low-Dimensional 3-D Descriptor
    Prakhya, Sai Manoj
    Lin, Jie
    Chandrasekhar, Vijay
    Lin, Weisi
    Liu, Bingbing
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03): : 1472 - 1479