The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model

被引:120
|
作者
Shimomura, Kazunori [6 ]
Ando, Wataru [6 ]
Tateishi, Kosuke [6 ]
Nansai, Ryosuke [5 ]
Fujie, Hiromichi [5 ]
Hart, David A. [4 ]
Kohda, Hideyuki [6 ]
Kita, Keisuke [6 ]
Kanamoto, Takashi [6 ]
Mae, Tatsuo [6 ]
Nakata, Ken [6 ]
Shino, Konsei [3 ]
Yoshikawa, Hideki [6 ]
Nakamura, Norimasa [1 ,2 ]
机构
[1] Osaka Hlth Sci Univ, Dept Rehabil Sci, Kita Ku, Osaka 5300043, Japan
[2] Osaka Univ, Ctr Adv Med Engn & Informat, Suita, Osaka 5650871, Japan
[3] Osaka Prefecture Univ, Fac Comprehens Rehabil, Habikino, Osaka 5838555, Japan
[4] Univ Calgary, McCaig Inst Bone & Joint Hlth, Calgary, AB T2N 4N1, Canada
[5] Kogakuin Univ, Dept Mech Engn, Biomech Lab, Hachioji, Tokyo 1920015, Japan
[6] Osaka Univ, Dept Orthopaed, Grad Sch Med, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
Mesenchymal stem cell; Cartilage tissue engineering; Allogenic cell; Aging; Animal model; ARTICULAR-CARTILAGE; OSTEOCHONDRAL DEFECTS; STROMAL CELLS; IN-VIVO; CHONDROCYTE TRANSPLANTATION; DONOR AGE; MATRIX; OSTEOARTHRITIS; GROWTH; DIFFERENTIATION;
D O I
10.1016/j.biomaterials.2010.07.017
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the potential factors that may affect the results of mesenchymal stem cell (MSC)-based therapy is the age of donors and recipients. However, there have been no controlled studies to investigate the influence of skeletal maturity on the MSC-based repair of cartilage. The purpose of this study was to compare the repair quality of damaged articular cartilage treated by a scaffold-free three-dimensional tissue-engineered construct (TEC) derived from synovial MSCs between immature and mature pigs. Synovial MSCs were isolated from immature and mature pigs and the proliferation and chondrogenic differentiation capacities were compared. The TEC derived from the synovial MSCs were then implanted into equivalent chondral defects in the medial femoral condyle of both immature and mature pigs, respectively. The implanted defects were morphologically and biomechanically evaluated at 6 months postoperatively. There was no skeletal maturity-dependent difference in proliferation or chondrogenic differentiation capacity of the porcine synovial MSCs. The TEC derived from synovial MSCs promoted the repair of chondral lesion in both immature and mature pigs without the evidence of immune reaction. The repaired tissue by the TEC also exhibited similar viscoelastic properties to normal cartilage regardless of the skeletal maturity. The results of the present study not only suggest the feasibility of allogenic MSC-based cartilage repair over generations but also may validate the use of immature porcine model as clinically relevant to test the feasibility of synovial MSC-based therapies in chondral lesions. (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8004 / 8011
页数:8
相关论文
共 50 条
  • [1] Mesenchymal stem cell-based therapy for cartilage repair: a review
    Hideyuki Koga
    Lars Engebretsen
    Jan E. Brinchmann
    Takeshi Muneta
    Ichiro Sekiya
    Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17 : 1289 - 1297
  • [2] Mesenchymal stem cell-based therapy for cartilage repair: a review
    Koga, Hideyuki
    Engebretsen, Lars
    Brinchmann, Jan E.
    Muneta, Takeshi
    Sekiya, Ichiro
    KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2009, 17 (11) : 1289 - 1297
  • [3] Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration
    Wei Seong Toh
    Casper Bindzus Foldager
    Ming Pei
    James Hoi Po Hui
    Stem Cell Reviews and Reports, 2014, 10 : 686 - 696
  • [4] Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration
    Toh, Wei Seong
    Foldager, Casper Bindzus
    Pei, Ming
    Hui, James Hoi Po
    STEM CELL REVIEWS AND REPORTS, 2014, 10 (05) : 686 - 696
  • [5] The influence of tissue microenvironment on stem cell-based cartilage repair
    Jayasuriya, Chathuraka T.
    Chen, Yupeng
    Liu, Wenguang
    Chen, Qian
    MUSCULOSKELETAL REPAIR AND REGENERATION, 2016, 1383 : 21 - 33
  • [6] A Stem Cell-Based Approach to Cartilage Repair
    Johnson, Kristen
    Zhu, Shoutian
    Tremblay, Matthew S.
    Payette, Joshua N.
    Wang, Jianing
    Bouchez, Laure C.
    Meeusen, Shelly
    Althage, Alana
    Cho, Charles Y.
    Wu, Xu
    Schultz, Peter G.
    SCIENCE, 2012, 336 (6082) : 717 - 721
  • [7] A STEM CELL-BASED APPROACH TO CARTILAGE REPAIR
    Johnson, K. A.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S4 - S4
  • [8] Promoting Effect of Basic Fibroblast Growth Factor in Synovial Mesenchymal Stem Cell-Based Cartilage Regeneration
    Okamura, Gensuke
    Ebina, Kosuke
    Hirao, Makoto
    Chijimatsu, Ryota
    Yonetani, Yasukazu
    Etani, Yuki
    Miyama, Akira
    Takami, Kenji
    Goshima, Atsushi
    Yoshikawa, Hideki
    Ishimoto, Takuya
    Nakano, Takayoshi
    Hamada, Masayuki
    Kanamoto, Takashi
    Nakata, Ken
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (01) : 1 - 16
  • [9] Preclinical Studies on Mesenchymal Stem Cell-Based Therapy for Growth Plate Cartilage Injury Repair
    Chung, Rosa
    Foster, Bruce K.
    Xian, Cory J.
    STEM CELLS INTERNATIONAL, 2011, 2011
  • [10] Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions
    Mobasheri, Ali
    Kalamegam, Gauthaman
    Musumeci, Giuseppe
    Batt, Mark E.
    MATURITAS, 2014, 78 (03) : 188 - 198