PARALLEL STOCHASTIC NEWTON METHOD

被引:5
|
作者
Mutny, Mojmir [1 ]
Richtarik, Peter [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Dept Informat, Zurich, Switzerland
[2] Univ Edinburgh, Sch Math, Edinburgh ETH9 3FD, Midlothian, Scotland
[3] KAUST, Comp Elect & Math Sci & Engn Dept, Thuwal, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
optimization; parallel methods; Newton's method; stochastic algorithms; COORDINATE DESCENT;
D O I
10.4208/jcm.1708-m2017-0113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to its serial counter-part. We show how PSN can be applied to the large quadratic function minimization in general, and empirical risk minimization problems. We demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.
引用
收藏
页码:404 / 425
页数:22
相关论文
共 50 条
  • [1] A parallel inexact Newton method for stochastic programs with recourse
    Chen, X.
    Womersley, R. S.
    Annals of Operations Research, 1996, (64):
  • [2] A parallel inexact Newton method for stochastic programs with recourse
    Chen, XJ
    Womersley, RS
    ANNALS OF OPERATIONS RESEARCH, 1996, 64 : 113 - 141
  • [3] Asynchronous parallel Newton method
    Fischer, H.
    Ritter, K.
    Mathematical Programming, Series B, 1988, 42 (01): : 363 - 374
  • [4] AN ASYNCHRONOUS PARALLEL NEWTON METHOD
    FISCHER, H
    RITTER, K
    MATHEMATICAL PROGRAMMING, 1988, 42 (02) : 363 - 374
  • [5] Asynchronous parallel stochastic Quasi-Newton methods
    Tong, Qianqian
    Liang, Guannan
    Cai, Xingyu
    Zhu, Chunjiang
    Bi, Jinbo
    PARALLEL COMPUTING, 2021, 101
  • [6] NEWTON METHOD FOR STOCHASTIC CONTROL PROBLEMS
    Gobet, Emmanuel
    Grangereau, Maxime
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (05) : 2996 - 3025
  • [7] A STOCHASTIC NEWTON METHOD FOR NONLINEAR EQUATIONS
    Wang, Jiani
    Wang, Xiao
    Zhang, Liwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1192 - 1221
  • [8] Stochastic Subspace Cubic Newton Method
    Hanzely, Filip
    Doikov, Nikita
    Richtarik, Peter
    Nesterov, Yurii
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [9] Global Newton Method for stochastic games
    Govindan, Srihari
    Wilson, Robert
    JOURNAL OF ECONOMIC THEORY, 2009, 144 (01) : 414 - 421
  • [10] STOCHASTIC NEWTON-RAPHSON METHOD
    ANBAR, D
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1978, 2 (02) : 153 - 163