Design and Fabrication of Metamaterial Anti-Reflection Coatings for the Simons Observatory

被引:13
|
作者
Golec, Joseph E. [1 ]
McMahon, Jeffrey J. [1 ,2 ,3 ,4 ]
Ali, Aamire M. [5 ]
Dicker, Simon [6 ]
Galitzki, Nicholas [7 ]
Harrington, Kathleen [2 ]
Westbrook, Benjamin [5 ]
Wollack, Edward J. [8 ]
Xu, Zhilei [6 ]
Zhu, Ningfeng [6 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA
[3] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[4] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA USA
[6] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[7] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[8] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
Simons Observatory; millimeter wavelengths; CMB; anti-reflection coatings; BROAD-BAND;
D O I
10.1117/12.2561720
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). These telescopes require 33 highly transparent, large aperture, refracting optics. To this end, we developed mechanically robust, highly efficient, metamaterial anti-reflection (AR) coatings with octave bandwidth coverage for silicon optics up to 46 cm in diameter for the 22-55, 75-165, and 190-310 GHz bands. We detail the design, the manufacturing approach to fabricate the SO lenses, their performance, and possible extensions of metamaterial AR coatings to optical elements made of harder materials such as alumina.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Simulated Performance of Laser-Machined Metamaterial Anti-reflection Coatings
    Farias, N.
    Beckman, S.
    Lee, A. T.
    Suzuki, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (5-6) : 1232 - 1241
  • [2] Anti-reflection coatings of zero-index metamaterial for solar cells
    Kamran, Muhammad
    Faryad, Muhammad
    AIP ADVANCES, 2020, 10 (02)
  • [3] Simulated Performance of Laser-Machined Metamaterial Anti-reflection Coatings
    N. Farias
    S. Beckman
    A. T. Lee
    A. Suzuki
    Journal of Low Temperature Physics, 2022, 209 : 1232 - 1241
  • [4] Design and fabrication of anti-reflection coatings for its application in crystalline silicon solar cells
    Anterdipan Singh
    Pratima Agarwal
    Journal of Materials Science: Materials in Electronics, 2025, 36 (12)
  • [5] Design and fabrication of sub-wavelength anti-reflection grating
    Zou, Wenlong
    Li, Chaoming
    Chen, Xinrong
    Cai, Zhijian
    Wu, Jianhong
    2017 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTICAL SYSTEMS AND MODERN OPTOELECTRONIC INSTRUMENTS, 2017, 10616
  • [6] PVD processes: Anti-reflection coatings
    Mattox, DM
    PLATING AND SURFACE FINISHING, 1996, 83 (01): : 62 - 63
  • [7] Fabrication and characterisation of TiO2 anti-reflection coatings with gradient index
    Tian, Li
    Li, Ling
    Wu, Min
    MICRO & NANO LETTERS, 2017, 12 (11): : 849 - 853
  • [8] Inverse design of anti-reflection coatings using the nonlinear approximate inverse
    Abazid, Mohammad Alakel
    Lakhal, Aref
    Louis, Alfred K.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (06) : 917 - 935
  • [9] The design of broad band anti-reflection coatings for solar cell applications
    Krishna, Angirekula Siva Rama
    Sabat, Samrat Lagnajeet
    Krishna, Mamidipudi Ghanashyam
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2017, 77 (01):
  • [10] DESIGN OF ANTI-REFLECTION COATINGS FOR TEXTURED SILICON SOLAR-CELLS
    SOPORI, BL
    PRYOR, RA
    SOLAR CELLS, 1983, 8 (03): : 249 - 261