Boundedness and Decay for the Teukolsky Equation on Kerr Spacetimes I: The Case |a|<<M

被引:0
|
作者
Dafermos, Mihalis [1 ,2 ]
Holzegel, Gustav [3 ]
Rodnianski, Igor [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[3] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Kerr black hole; Teukolsky equation; General relativity; QUANTUM SCATTERING-THEORY; KLEIN-GORDON EQUATION; LINEAR SCALAR FIELDS; BLACK-HOLE; WAVE-EQUATION; MAXWELL FIELD; GRAVITATIONAL-RADIATION; MODE-STABILITY; LOCAL ENERGY; PRICES LAW;
D O I
10.1007/s40818-018-0058-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove boundedness and polynomial decay statements for solutions of the spin +/- 2 Teukolsky equation on a Kerr exterior background with parameters satisfying |a|<< M. The bounds are obtained by introducing generalisations of the higher order quantities P and <mml:munder>P_</mml:munder> used in our previous work on the linear stability of Schwarzschild. The existence of these quantities in the Schwarzschild case is related to the transformation theory of Chandrasekhar. In a followup paper, we shall extend this result to the general sub-extremal range of parameters |a|<M. As in the Schwarzschild case, these bounds provide the first step in proving the full linear stability of the Kerr metric to gravitational perturbations.
引用
收藏
页数:118
相关论文
共 50 条