Universality of deep convolutional neural networks

被引:330
|
作者
Zhou, Ding-Xuan [1 ,2 ]
机构
[1] City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Deep learning; Convolutional neural network; Universality; Approximation theory; MULTILAYER FEEDFORWARD NETWORKS; OPTIMAL APPROXIMATION; BOUNDS;
D O I
10.1016/j.acha.2019.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Deep learning has been widely applied and brought breakthroughs in speech recognition, computer vision, and many other domains. Deep neural network architectures and computational issues have been well studied in machine learning. But there lacks a theoretical foundation for understanding the approximation or generalization ability of deep learning methods generated by the network architectures such as deep convolutional neural networks. Here we show that a deep convolutional neural network (CNN) is universal, meaning that it can be used to approximate any continuous function to an arbitrary accuracy when the depth of the neural network is large enough. This answers an open question in learning theory. Our quantitative estimate, given tightly in terms of the number of free parameters to be computed, verifies the efficiency of deep CNNs in dealing with large dimensional data. Our study also demonstrates the role of convolutions in deep CNNs. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:787 / 794
页数:8
相关论文
共 50 条
  • [1] Deep distributed convolutional neural networks: Universality
    Zhou, Ding-Xuan
    ANALYSIS AND APPLICATIONS, 2018, 16 (06) : 895 - 919
  • [2] Deep Convolutional Neural Networks
    Gonzalez, Rafael C.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 79 - 87
  • [3] Deep Anchored Convolutional Neural Networks
    Huang, Jiahui
    Dwivedi, Kshitij
    Roig, Gemma
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 639 - 647
  • [4] Deep Unitary Convolutional Neural Networks
    Chang, Hao-Yuan
    Wang, Kang L.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 170 - 181
  • [5] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LVCSR
    Sainath, Tara N.
    Mohamed, Abdel-rahman
    Kingsbury, Brian
    Ramabhadran, Bhuvana
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8614 - 8618
  • [6] A Review on Deep Convolutional Neural Networks
    Aloysius, Neena
    Geetha, M.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 588 - 592
  • [7] Convergence of deep convolutional neural networks
    Xu, Yuesheng
    Zhang, Haizhang
    NEURAL NETWORKS, 2022, 153 : 553 - 563
  • [8] Spatial deep convolutional neural networks
    Wang, Qi
    Parker, Paul A.
    Lund, Robert
    SPATIAL STATISTICS, 2025, 66
  • [9] Fusion of Deep Convolutional Neural Networks
    Suchy, Robert
    Ezekiel, Soundararajan
    Cornacchia, Maria
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [10] Universality of Group Convolutional Neural Networks Based on Ridgelet Analysis on Groups
    Sonoda, Sho
    Ishikawa, Isao
    Ikeda, Masahiro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,