A note on bifurcations of motions in the Lorentz system

被引:9
|
作者
Martynyuk, AA [1 ]
Nikitina, NV [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Kiev, Ukraine
关键词
Lorenz equations; limit cycle; bifurcation; chaos;
D O I
10.1023/A:1023921901316
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The limit-cycle phenomenon in the Lorenz system is studied with considering bifurcation slates of a dynamic system. It is established that the trajectory has a complex structure and includes intervals of periodic solutions of different kinematics and an interval of saddle-node solution.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 50 条
  • [1] A Note on Bifurcations of Motions in the Lorentz System
    A. A. Martynyuk
    N. V. Nikitina
    International Applied Mechanics, 2003, 39 : 224 - 231
  • [2] Periodic motions and bifurcations of a vibrating impact system
    Shi, BZ
    Luo, GW
    Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, Vols 1 and 2, 2005, : 709 - 713
  • [3] Periodic motions and bifurcations of a vibro-impact system with progressive motions
    Lü X.
    Luo G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2018, 37 (06): : 162 - 167
  • [4] Analytical periodic motions and bifurcations in a nonlinear rotor system
    Huang J.
    Luo A.C.J.
    International Journal of Dynamics and Control, 2014, 2 (03) : 425 - 459
  • [5] Bifurcations and chaotic motions of a forced nonlinear oscillating system
    Huang, MN
    Tsuda, Y
    Sueoka, A
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 674 - 678
  • [6] Periodic motions and bifurcations of a vibro-impact system
    Luo, Guanwei
    Me, Jianhua
    Zhu, Xifeng
    Zhang, Jiangang
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1340 - 1347
  • [7] Bifurcations and Chaotic Motions of a Class of Mechanical System With Parametric Excitations
    Zhou, Liangqiang
    Chen, Fangqi
    Chen, Yushu
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (05):
  • [8] Periodic-impact motions and bifurcations of a dual component system
    Luo, G. W.
    Yu, J. N.
    Zhang, J. G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (04) : 813 - 828
  • [9] Subharmonic bifurcations and chaotic motions for a class of inverted pendulum system
    Zhou, Liangqiang
    Liu, Shanshan
    Chen, Fangqi
    CHAOS SOLITONS & FRACTALS, 2017, 99 : 270 - 277
  • [10] STABILITY AND BIFURCATIONS OF SITNIKOV MOTIONS
    PERDIOS, E
    MARKELLOS, VV
    CELESTIAL MECHANICS, 1988, 42 (1-4): : 187 - 200