Quantum Super-Integrable Systems as Exactly Solvable Models

被引:24
|
作者
Fordy, Allan P. [1 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
关键词
quantum integrability; super-integrability; exact solvability; Laplace-Beltrami;
D O I
10.3842/SIGMA.2007.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [2] On Certain Super-Integrable Hamiltonian Systems
    G. Khimshiashvili
    R. Przybysz
    Journal of Dynamical and Control Systems, 2002, 8 : 217 - 244
  • [3] Exactly solvable models and dynamic quantum systems
    Velicheva, EP
    Suz'ko, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (01) : 458 - 478
  • [4] On algebraic construction of certain integrable and super-integrable systems
    Maciejewski, A. J.
    Przybylska, M.
    Tsiganov, A. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (18) : 1426 - 1448
  • [5] Exactly solvable models and dynamic quantum systems
    E. P. Velicheva
    A. A. Suz'ko
    Theoretical and Mathematical Physics, 1998, 115 : 458 - 478
  • [6] On certain super-integrable Hamiltonian systems
    Khimshiashvili, G
    Przybysz, R
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (02) : 217 - 244
  • [7] From two-dimensional (super-integrable) quantum dynamics to (super-integrable) three-body dynamics
    Turbiner, Alexander, V
    Miller, Willard, Jr.
    Escobar-Ruiz, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (01)
  • [8] A Kaluza-Klein reduction of super-integrable systems
    Fordy, Allan P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 210 - 219
  • [9] An exactly solvable quench protocol for integrable spin models
    Das, Diptarka
    Das, Sumit R.
    Galante, Damian A.
    Myers, Robert C.
    Sengupta, Krishnendu
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [10] TWO SUPER-INTEGRABLE SYSTEMS AND ASSOCIATED SUPER-HAMILTONIAN STRUCTURES
    Zhao, Qiu-Lan
    Li, Xin-Yue
    He, Bai-Ying
    MODERN PHYSICS LETTERS B, 2009, 23 (27): : 3253 - 3264