Regression Learning with Multiple Noisy Oracles

被引:5
|
作者
Ristovski, Kosta [1 ]
Das, Debasish [1 ]
Ouzienko, Vladimir [1 ]
Guo, Yuhong [1 ]
Obradovic, Zoran [1 ]
机构
[1] Temple Univ, Ctr Informat Sci & Technol, Philadelphia, PA 19122 USA
关键词
TEACHER;
D O I
10.3233/978-1-60750-606-5-445
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In regression learning, it is often difficult to obtain the true values of the label variables, while multiple sources of noisy estimates of lower quality are readily available. To address this problem, we propose a new Bayesian approach that learns a regression model from data with noisy labels provided by multiple oracles. The proposed method provides closed form solution for model parameters and is applicable to both linear and nonlinear regression problems. In our experiments on synthetic and benchmark datasets this new regression model was consistently more accurate than a model trained with averaged estimates from multiple oracles as labels.
引用
收藏
页码:445 / 450
页数:6
相关论文
共 50 条
  • [1] A probabilistic model of active learning with multiple noisy oracles
    Wu, Weining
    Liu, Yang
    Guo, Maozu
    Wang, Chunyu
    Liu, Xiaoyan
    NEUROCOMPUTING, 2013, 118 : 253 - 262
  • [2] Noisy inference and oracles
    Stephan, F
    THEORETICAL COMPUTER SCIENCE, 1997, 185 (01) : 129 - 157
  • [3] Random Oracles for Regression Ensembles
    Pardo, Carlos
    Rodriguez, Juan J.
    Diez-Pastor, Jose F.
    Garcia-Osorio, Cesar
    ENSEMBLES IN MACHINE LEARNING APPLICATIONS, 2011, 373 : 181 - 199
  • [4] (Bandit) Convex Optimization with Biased Noisy Gradient Oracles
    Hu, Xiaowei
    Prashanth, L. A.
    Gyorgy, Andras
    Szepesvari, Csaba
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 819 - 828
  • [5] Active Learning with Imbalanced Multiple Noisy Labeling
    Zhang, Jing
    Wu, Xindong
    Sheng, Victor S.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1081 - 1093
  • [6] Learning from Multiple Noisy Partial Labelers
    Yu, Peilin
    Ding, Tiffany
    Bach, Stephen H.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [7] Cauchy regularized broad learning system for noisy data regression
    Liu, Licheng
    Cai, Luyang
    Liu, Tingyun
    Philip Chen, C.L.
    Tang, Xiaoqin
    Information Sciences, 2022, 603 : 210 - 221
  • [8] Cauchy regularized broad learning system for noisy data regression
    Liu, Licheng
    Cai, Luyang
    Liu, Tingyun
    Chen, C. L. Philip
    Tang, Xiaoqin
    INFORMATION SCIENCES, 2022, 603 : 210 - 221
  • [9] Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels
    Wang, Yikai
    Sun, Xinwei
    Fu, Yanwei
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 346 - 355
  • [10] Practical Contextual Bandits with Regression Oracles
    Foster, Dylan J.
    Agarwal, Alekh
    Dudik, Miroslav
    Luo, Haipeng
    Schapire, Robert E.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80