Global optimality conditions and optimization methods for polynomial programming problems

被引:1
作者
Wu, Z. Y. [1 ,2 ]
Tian, J. [2 ]
Ugon, J. [2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Federat Univ, Sch Sci Informat Technol & Engn, Ballarat, Vic 3353, Australia
关键词
Polynomial programming problem; Necessary global optimality condition; Linear transformation; Local optimization method; Global optimization method; RELAXATIONS; SQUARES; MOMENTS; ROOTS; SUMS;
D O I
10.1007/s10898-015-0292-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is concerned with the general polynomial programming problem with box constraints, including global optimality conditions and optimization methods. First, a necessary global optimality condition for a general polynomial programming problem with box constraints is given. Then we design a local optimization method by using the necessary global optimality condition to obtain some strongly or -strongly local minimizers which substantially improve some KKT points. Finally, a global optimization method, by combining the new local optimization method and an auxiliary function, is designed. Numerical examples show that our methods are efficient and stable.
引用
收藏
页码:617 / 641
页数:25
相关论文
共 43 条
  • [1] [Anonymous], 1992, J. Glob. Optim, DOI DOI 10.1007/BF00121304
  • [2] [Anonymous], 1990, LECT NOTES COMPUTER
  • [3] [Anonymous], NONCON OPTIM ITS APP
  • [4] [Anonymous], 1999, Handbook of test problems in local and global optimization
  • [5] Bazaraa M. S., 2013, NONLINEAR PROGRAMMIN
  • [6] Bini DA, 2004, COMPUT MATH APPL, V47, P447, DOI [10.1016/S0898-1221(04)90037-5, 10.1016/S0898-1221(04)00024-0]
  • [7] How to count efficiently all affine roots of a polynomial system
    Emiris, IZ
    Verschelde, J
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 93 (01) : 21 - 32
  • [8] Floudas C.A., 1999, Deterministic global optimization: theory, methods and applications
  • [9] An iterated eigenvalue algorithm for approximating roots of univariate polynomials
    Fortune, S
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (05) : 627 - 646
  • [10] Gelfand I. M., 1994, DISCRIMINANTS DISCRI, P271