Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes

被引:26
|
作者
Chlanda, Adrian [1 ]
Rebis, Janusz [1 ]
Kijenska-Gawronska, Ewa [1 ]
Wozniak, Michal J. [1 ,2 ]
Rozniatowski, Krzysztof [1 ]
Swieszkowski, Wojciech [1 ]
Kurzydlowski, Krzysztof J. [1 ]
机构
[1] Warsaw Univ Technol, Fac Mat Sci & Engn, 141 Woloska Str, PL-02507 Warsaw, Poland
[2] Warsaw Univ Technol, Univ Res Ctr Funct Mat, PL-02507 Warsaw, Poland
关键词
Atomic force microscopy; PeakForce Quantitative NanoMechanics; Electrospun fibers; Focused ion beam; Mechanical properties; MECHANICAL-PROPERTIES; NANOFIBERS; CHONDROCYTES; FABRICATION; SCAFFOLDS; SILICON; PROTEIN;
D O I
10.1016/j.micron.2015.01.005
中图分类号
TH742 [显微镜];
学科分类号
摘要
Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electros pun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Quantitative imaging of diatoms by PeakForce atomic force microscopy
    Lamczyk, M.
    Kawelski, L.
    Noga, T.
    Stanek-Tarkowska, J.
    Berezovska, I.
    Berchenko, N.
    Parlinska-Wojtan, M.
    Cebulski, J.
    SURFACE AND INTERFACE ANALYSIS, 2014, 46 (10-11) : 851 - 855
  • [2] Atomic Force Microscopy of Red-Light Photoreceptors Using PeakForce Quantitative Nanomechanical Property Mapping
    Kroeger, Marie E.
    Sorenson, Blaire A.
    Thomas, J. Santoro
    Stojkovic, Emina A.
    Tsonchev, Stefan
    Nicholson, Kenneth T.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (92):
  • [3] Quantitative characterization of the electrospun gelatin-chitosan nanofibers by coupling scanning electron microscopy and atomic force microscopy
    Wang, Shilu
    Zhao, Guoming
    MATERIALS LETTERS, 2012, 79 : 14 - 17
  • [4] Quantitative Nanoelectrical and Nanomechanical Properties of Nanostructured Hybrid Composites by PeakForce Tunneling Atomic Force Microscopy
    Gutierrez, Junkal
    Mondragon, Inaki
    Tercjak, Agnieszka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (02): : 1206 - 1212
  • [5] Models for quantitative charge imaging by atomic force microscopy
    Boer, EA
    Bell, LD
    Brongersma, ML
    Atwater, HA
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (06) : 2764 - 2772
  • [6] Improved Application of Carbon Nanotube Atomic Force Microscopy Probes Using PeakForce Tapping Mode
    Slattery, Ashley D.
    Shearer, Cameron J.
    Shapter, Joseph G.
    Blanch, Adam J.
    Quinton, Jamie S.
    Gibson, Christopher T.
    NANOMATERIALS, 2018, 8 (10):
  • [7] Quantitative atomic force microscopy
    Soengen, Hagen
    Bechstein, Ralf
    Kuehnle, Angelika
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [8] Quantitative charge imaging of silicon nanocrystals by atomic force microscopy
    Feng, T
    Atwater, HA
    QUANTUM CONFINED SEMICONDUCTOR NANOSTRUCTURES, 2003, 737 : 283 - 288
  • [9] Quantitative atom-resolved force gradient imaging using noncontact atomic force microscopy
    Oral, A
    Grimble, RA
    Özer, HÖ
    Hoffmann, PM
    Pethica, JB
    APPLIED PHYSICS LETTERS, 2001, 79 (12) : 1915 - 1917
  • [10] Quantitative impedance measurement using atomic force microscopy
    O'Hayre, R
    Feng, G
    Nix, WD
    Prinz, FB
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) : 3540 - 3549