Imputation of missing values for electronic health record laboratory data

被引:64
作者
Li, Jiang [1 ]
Yan, Xiaowei S. [2 ]
Chaudhary, Durgesh [1 ]
Avula, Venkatesh [1 ]
Mudiganti, Satish [2 ]
Husby, Hannah [2 ]
Shahjouei, Shima [1 ]
Afshar, Ardavan [3 ]
Stewart, Walter F. [4 ]
Yeasin, Mohammed [5 ]
Zand, Ramin [1 ]
Abedi, Vida [1 ,6 ]
机构
[1] Geisinger Hlth Syst, Danville, PA 17822 USA
[2] Sutter Ctr Hlth Syst Res, Walnut Creek, CA USA
[3] Georgia Inst Technol, Sch Comp, Atlanta, GA 30332 USA
[4] Medcurio, 300 Frank H Ogawa Plaza,Suite 248, Oakland, CA 94612 USA
[5] Univ Memphis, Dept Elect & Comp Engn, Memphis, TN USA
[6] Penn State Univ, Dept Publ Hlth Sci, Coll Med, Hershey, PA 17033 USA
关键词
FULLY CONDITIONAL SPECIFICATION; MULTIPLE IMPUTATION; STRATEGIES; INFERENCE;
D O I
10.1038/s41746-021-00518-0
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Laboratory data from Electronic Health Records (EHR) are often used in prediction models where estimation bias and model performance from missingness can be mitigated using imputation methods. We demonstrate the utility of imputation in two real-world EHR-derived cohorts of ischemic stroke from Geisinger and of heart failure from Sutter Health to: (1) characterize the patterns of missingness in laboratory variables; (2) simulate two missing mechanisms, arbitrary and monotone; (3) compare cross-sectional and multi-level multivariate missing imputation algorithms applied to laboratory data; (4) assess whether incorporation of latent information, derived from comorbidity data, can improve the performance of the algorithms. The latter was based on a case study of hemoglobin A1c under a univariate missing imputation framework. Overall, the pattern of missingness in EHR laboratory variables was not at random and was highly associated with patients' comorbidity data; and the multi-level imputation algorithm showed smaller imputation error than the cross-sectional method.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Predicting short and long-term mortality after acute ischemic stroke using EHR [J].
Abedi, Vida ;
Avula, Venkatesh ;
Razavi, Seyed-Mostafa ;
Bavishi, Shreya ;
Chaudhary, Durgesh ;
Shahjouei, Shima ;
Wang, Ming ;
Griessenauer, Christoph J. ;
Li, Jiang ;
Zand, Ramin .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2021, 427
[2]   Prediction of Long-Term Stroke Recurrence Using Machine Learning Models [J].
Abedi, Vida ;
Avula, Venkatesh ;
Chaudhary, Durgesh ;
Shahjouei, Shima ;
Khan, Ayesha ;
Griessenauer, Christoph J. ;
Li, Jiang ;
Zand, Ramin .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (06) :1-16
[3]   Increasing the Density of Laboratory Measures for Machine Learning Applications [J].
Abedi, Vida ;
Li, Jiang ;
Shivakumar, Manu K. ;
Avula, Venkatesh ;
Chaudhary, Durgesh P. ;
Shellenberger, Matthew J. ;
Khara, Harshit S. ;
Zhang, Yanfei ;
Lee, Ming Ta Michael ;
Wolk, Donna M. ;
Yeasin, Mohammed ;
Hontecillas, Raquel ;
Bassaganya-Riera, Josep ;
Zand, Ramin .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (01) :1-23
[4]   Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework [J].
Abedi, Vida ;
Khan, Ayesha ;
Chaudhary, Durgesh ;
Misra, Debdipto ;
Avula, Venkatesh ;
Mathrawala, Dhruv ;
Kraus, Chadd ;
Marshall, Kyle A. ;
Chaudhary, Nayan ;
Li, Xiao ;
Schirmer, Clemens M. ;
Scalzo, Fabien ;
Li, Jiang ;
Zand, Ramin .
THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2020, 13
[5]   Novel Screening Tool for Stroke Using Artificial Neural Network [J].
Abedi, Vida ;
Goyal, Nitin ;
Tsivgoulis, Georgios ;
Hosseinichimeh, Niyousha ;
Hontecillas, Raquel ;
Bassaganya-Riera, Josep ;
Elijovich, Lucas ;
Metter, Jeffrey E. ;
Alexandrov, Anne W. ;
Liebeskind, David S. ;
Alexandrov, Andrei V. ;
Zand, Ramin .
STROKE, 2017, 48 (06) :1678-+
[6]  
Arbuckle J. L., 1996, Advanced structural equation modeling: Issues and techniques, P243
[7]   Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry [J].
Ayilara, Olawale F. ;
Zhang, Lisa ;
Sajobi, Tolulope T. ;
Sawatzky, Richard ;
Bohm, Eric ;
Lix, Lisa M. .
HEALTH AND QUALITY OF LIFE OUTCOMES, 2019, 17 (1)
[8]   Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models [J].
Bondarenko, Irina ;
Raghunathan, Trivellore .
STATISTICS IN MEDICINE, 2016, 35 (17) :3007-3020
[9]   Trends in ischemic stroke outcomes in a rural population in the United States [J].
Chaudhary, Durgesh ;
Khan, Ayesha ;
Shahjouei, Shima ;
Gupta, Mudit ;
Lambert, Clare ;
Avula, Venkatesh ;
Schirmer, Clemens M. ;
Holland, Neil ;
Griessenauer, Christoph J. ;
Azarpazhooh, M. Reza ;
Li, Jiang ;
Abedi, Vida ;
Zand, Ramin .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2021, 422
[10]   Obesity and mortality after the first ischemic stroke: Is obesity paradox real? [J].
Chaudhary, Durgesh ;
Khan, Ayesha ;
Gupta, Mudit ;
Hu, Yirui ;
Li, Jiang ;
Abedi, Vida ;
Zand, Ramin .
PLOS ONE, 2021, 16 (02)