Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour

被引:151
|
作者
Zhu, Sicong [1 ]
Stieger, Markus A. [2 ]
van der Goot, Atze Jan [1 ]
Schutyser, Maarten A. I. [1 ]
机构
[1] Wageningen Univ, Lab Food Proc Engn, Bornse Weilanden 9, NL-6708 WG Wageningen, Netherlands
[2] Wageningen Univ, Div Human Nutr, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
关键词
3D food printing; Rheological properties; Dispensability; Stability; GEL;
D O I
10.1016/j.ifset.2019.102214
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Development of 3D food printing applications requires in-depth knowledge on printing behaviour of food materials. In extrusion-based 3D printing, rheological properties of a recipe are critical to achieve successful printing. The objective of this research is to investigate potential correlations between printability of formulations and simple rheological properties. We used tomato paste as a model system to investigate the correlation between printing stability, dispensability and rheological properties. The results show a linear correlation between ingredient's flow stress, zero shear viscosity and corresponding printing stability. The extrusion pressure necessary to extrude tomato paste increased linearly with increasing flow stress. More experiments with other aqueous-based food formulations indicated that their printability aligned reasonably well with the correlation of tomato paste; however, for fat-based products different printing behaviour was observed. Finally, we propose a rational guideline for developing aqueous food recipes with desired printability based on flow stress measured by shear rheology.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour
    Bom, Sara
    Ribeiro, Ricardo
    Ribeiro, Helena M.
    Santos, Catarina
    Marto, Joana
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 615
  • [2] Characterization of rice flour and pastes with different sweeteners for extrusion-based 3D food printing
    Prithviraj, V.
    Thangalakshmi, S.
    Arora, Vinkel Kumar
    Liu, Zhenbin
    JOURNAL OF TEXTURE STUDIES, 2022, 53 (06) : 895 - 907
  • [3] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [4] 3D food printing: Applications of plant-based materials in extrusion-based food printing
    Wang, Mingshuang
    Li, Dongnan
    Zang, Zhihuan
    Sun, Xiyun
    Tan, Hui
    Si, Xu
    Tian, Jinlong
    Teng, Wei
    Wang, Jiaxin
    Liang, Qi
    Bao, Yiwen
    Li, Bin
    Liu, Ruihai
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2022, 62 (26) : 7184 - 7198
  • [5] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    José Luis Dávila
    Marcos Akira d’Ávila
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 675 - 686
  • [6] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    Davila, Jose Luis
    d'Avila, Marcos Akira
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4): : 675 - 686
  • [7] RHEOLOGICAL CHARACTERIZATION AND COMPARISON OF PRINTING HYDROGEL-BASED COMPOSITE INKS FOR EXTRUSION-BASED 3D PRINTING
    Wozniak, Anna
    Biernat, Monika
    Swieszkowski, Wojciech
    Szterner, Piotr
    Gizowska, Magdalena
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1290 - 1291
  • [8] Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability
    Outrequin, Theo Claude Roland
    Gamonpilas, Chaiwut
    Siriwatwechakul, Wanwipa
    Sreearunothai, Paiboon
    JOURNAL OF FOOD ENGINEERING, 2023, 342
  • [9] Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing
    Liu, Yaowei
    Yu, Yun
    Liu, Changshu
    Regenstein, Joe M.
    Liu, Xiaoming
    Zhou, Peng
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2019, 102 : 338 - 346
  • [10] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81