Maximal Thurston-Bennequin number of plus adequate links

被引:6
|
作者
Kalman, Tamas [1 ]
机构
[1] Univ Tokyo, Grad Sch Math, Meguro Ku, Tokyo 1538914, Japan
关键词
D O I
10.1090/S0002-9939-08-09478-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The class of +adequate links contains both alternating and positive links. Generalizing results of Tanaka (for the positive case) and Ng (for the alternating case), we construct fronts of an arbitrary +adequate link A so that the diagram has a ruling; therefore its Thurston-Bennequin number is maximal among Legendrian representatives of A. We derive consequences for the Kauffman polynomial and Khovanov homology of +adequate links.
引用
收藏
页码:2969 / 2977
页数:9
相关论文
共 27 条