Stability of Compact Symmetric Spaces

被引:7
|
作者
Semmelmann, Uwe [1 ]
Weingart, Gregor [2 ]
机构
[1] Univ Stuttgart, Inst Geometrie & Topol, Fachbereich Math, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Ave Univ S-N, Cuernavaca 62210, Morelos, Mexico
关键词
Symmetric spaces; Einstein metrics; Stability;
D O I
10.1007/s12220-021-00838-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie algebras with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation and use this information to prove the stability of the Einstein metrics on both the quaternionic and Cayley projective plane. Moreover, we prove that the Einstein metrics on quaternionic Grassmannians different from projective spaces are unstable.
引用
收藏
页数:27
相关论文
共 50 条