From loop groups to 2-groups

被引:81
|
作者
Baez, John C. [1 ]
Stevenson, Danny
Crans, Alissa S.
Schreiber, Urs
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Loyola Marymount Univ, Dept Math, Los Angeles, CA 90045 USA
[3] Univ Hamburg, Org Math, Schwerpunkt Algebra & Zahelntheor, D-20146 Hamburg, Germany
关键词
gerbe; Kac-Moody extension; Lie; 2-algebra; loop group; string group; 2-group;
D O I
10.4310/HHA.2007.v9.n2.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an interesting relation between Lie 2-algebras, the Kac-Moody central extensions of loop groups, and the group String( n). A Lie 2-algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the `Jacobiator.' Similarly, a Lie 2-group is a categorified version of a Lie group. If G is a simply-connected compact simple Lie group, there is a 1-parameter family of Lie 2-algebras g(k) each having g as its Lie algebra of objects, but with a Jacobiator built from the canonical 3-form on G. There appears to be no Lie 2-group having g(k) as its Lie 2-algebra, except when k = 0. Here, however, we construct for integral k an infinite-dimensional Lie 2-group P(k)G whose Lie 2-algebra is equivalent to g k. The objects of P(k)G are based paths in G, while the automorphisms of any object form the level-k Kac-Moody central extension of the loop group Omega G. This 2-group is closely related to the kth power of the canonical gerbe over G. Its nerve gives a topological group |P(k)G| that is an extension of G by K( Z, 2). When k = +/- 1, |P(k)G| can also be obtained by killing the third homotopy group of G. Thus, when G = Spin( n), | P(k)G| is none other than String( n).
引用
收藏
页码:101 / 135
页数:35
相关论文
共 50 条
  • [1] Lie 2-groups from loop group extensions
    Ludewig, Matthias
    Waldorf, Konrad
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2024, 19 (04) : 597 - 633
  • [2] On 2-groups as Galois groups
    Ledet, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06): : 1253 - 1273
  • [3] Automorphism groups of 2-groups
    Eick, Bettina
    JOURNAL OF ALGEBRA, 2006, 300 (01) : 91 - 101
  • [4] On Pseudofunctors Sending Groups to 2-Groups
    Cigoli, Alan S. S.
    Mantovani, Sandra
    Metere, Giuseppe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [5] M-GROUPS AND 2-GROUPS
    DORNHOFF, L
    MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) : 226 - &
  • [6] On Pseudofunctors Sending Groups to 2-Groups
    Alan S. Cigoli
    Sandra Mantovani
    Giuseppe Metere
    Mediterranean Journal of Mathematics, 2023, 20
  • [7] ON GROUPS WITH ABELIAN SYLOW 2-GROUPS
    GAGEN, TM
    MATHEMATISCHE ZEITSCHRIFT, 1965, 90 (04) : 268 - &
  • [8] On Schur 2-Groups
    Muzychuk M.E.
    Ponomarenko I.N.
    Journal of Mathematical Sciences, 2016, 219 (4) : 565 - 594
  • [9] WALL GROUPS FOR ELEMENTARY 2-GROUPS
    HARSILADZE, AF
    MATHEMATICS OF THE USSR-SBORNIK, 1981, 114 (01): : 145 - 154
  • [10] Codes from Dihedral 2-Groups
    S. Gupta
    P. Rani
    Mathematical Notes, 2022, 112 : 885 - 897