Earth-mass primordial black hole mergers as sources for nonrepeating fast radio bursts

被引:5
|
作者
Deng, Can-Min [1 ,2 ]
机构
[1] Guangxi Univ, GXU NAOC Ctr Astrophys & Space Sci, Dept Phys, Nanning 530004, Peoples R China
[2] Univ Sci & Technol China, Dept Astron, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
RADIATION; DETECTOR; MODEL;
D O I
10.1103/PhysRevD.103.123030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fast radio bursts (FRBs) are mysterious astronomical radio transients with extremely short intrinsic duration. Until now, the physical origins of them still remain elusive, especially for the nonrepeating FRBs. Strongly inspired by recent progress on possible evidence of Earth-mass primordial black holes, we revisit the model of Earth-mass primordial black holes mergers as sources for nonrepeating FRBs. Under the null hypothesis that the observed nonrepeating FRBs originate from the mergers of Earth-mass primordial black holes, we analyzed four independent samples of nonrepeating FRBs to study the model parameters, i.e., the typical charge value q(c) and the power index alpha of the charge distribution function of the primordial black hole population phi(q) proportional to (q/q(c))(-alpha), which describe how the charge was distributed in the population. q is the charge of the hole in the unit of root GM, where M is the mass of the hole. It turns out that this model can explain the observed data well. Assuming the monochromatic mass spectrum for primordial black holes, we get the average value of typical charge (q) over bar (c)/10(-5) =1.59(-0.18)(+0.08) and the power index (alpha) over bar = 4.53(-0.14)(+0.21) by combining the fitting results given by four nonrepeating FRB samples. The event rate of the nonrepeating FRBs can be explained in the context of this model if the abundance of the primordial black hole populations with charge q greater than or similar to 10(-6) is larger than 10(-5), which is far below the upper limit given by current observations for the abundance of Earth-mass primordial black holes. In the future, simultaneous detection of FRBs and high frequency gravitational waves produced by mergers of Earth-mass primordial black holes may directly confirm or deny this model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Primordial black hole tower: Dark matter, earth-mass, and LIGO black holes
    Tada, Yuichiro
    Yokoyama, Shuichiro
    PHYSICAL REVIEW D, 2019, 100 (02)
  • [2] Fast radio bursts from primordial black hole binaries coalescence
    Deng, Can-Min
    Cai, Yifu
    Wu, Xue-Feng
    Liang, En-Wei
    PHYSICAL REVIEW D, 2018, 98 (12)
  • [3] Constraining primordial black hole dark matter with CHIME fast radio bursts
    Krochek, Keren
    Kovetz, Ely D.
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [4] Constraining the Earth-mass Primordial Black Hole Mergers Model of the Non-repeating FRBs Using the First CHIME/FRB Catalog
    Meng, Min
    Huang, Qiu-Ju
    Deng, Can-Min
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (09)
  • [5] Constraining the Earth-mass Primordial Black Hole Mergers Model of the Non-repeating FRBs Using the First CHIME/FRB Catalog
    Min Meng
    Qiu-Ju Huang
    Can-Min Deng
    Research in Astronomy and Astrophysics, 2024, 24 (09) : 78 - 84
  • [6] FAST RADIO BURSTS AND RADIO TRANSIENTS FROM BLACK HOLE BATTERIES
    Mingarelli, Chiara M. F.
    Levin, Janna
    Lazio, T. Joseph W.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 814 (02)
  • [7] Constraints on the abundance of primordial black holes with different mass distributions from lensing of fast radio bursts
    Zhou, Huan
    Li, Zhengxiang
    Huang, Zhiqi
    Gao, He
    Huang, Lu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (01) : 1141 - 1152
  • [8] A Geometric Neutron Star Model of Repeating and Nonrepeating Fast Radio Bursts
    Liu, Ze-Nan
    Xia, Zhao-Yang
    Zhong, Shu-Qing
    Wang, Fa-Yin
    Dai, Zi-Gao
    ASTROPHYSICAL JOURNAL, 2024, 965 (02):
  • [9] Collisions of Neutron Stars with Primordial Black Holes as Fast Radio Bursts Engines
    Abramowicz, Marek A.
    Bejger, Michal
    Wielgus, Maciek
    ASTROPHYSICAL JOURNAL, 2018, 868 (01):
  • [10] Long and Short Fast Radio Bursts Are Different from Repeating and Nonrepeating Transients
    Li, X. J.
    Dong, X. F.
    Zhang, Z. B.
    Li, D.
    ASTROPHYSICAL JOURNAL, 2021, 923 (02):