Engineering crop plants against abiotic stress: Current achievements and prospects

被引:15
|
作者
Bakhsh, Allah [1 ]
Hussain, Tahira [1 ]
机构
[1] Nigde Univ, Fac Agr Sci & Technol, Dept Agr Genet Engn, TR-51240 Nigde, Turkey
来源
关键词
Crop productivity; Desired trait; Genetic transformation; Stress physiology; TRANSGENIC RICE PLANTS; RESPONSIVE GENE-EXPRESSION; ORYZA-SATIVA L; ENHANCES DROUGHT TOLERANCE; WATER-USE EFFICIENCY; HEAT-SHOCK-PROTEIN; TRANSCRIPTION FACTOR; GOSSYPIUM-HIRSUTUM; OXIDATIVE STRESS; OVER-EXPRESSION;
D O I
10.9755/ejfa.v27il.17980
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The growth, development and productivity of crop plants is negatively influenced by abiotic stresses like drought, salinity, heat and chilling leading to significant losses in crop yield. The modern technology of genetic engineering has enabled the scientists to move genes from distant sources into crop plants to develop resistance against insect pests, weeds and invading pathogens, some of them have already been commercialized. Similarly, efforts have been made to develop crop plants with enhanced tolerance against drought, salinity and chilling and waterlogging stress. Engineering-crops against abiotic stresses has always been a challenge as this character is controlled by multigenes. The stress signaling and regulatory pathways have been elucidated using advanced molecular approaches and genes encoding tolerance to drought, salinity and chilling stress are being introduced in crop plants of economic importance using transformational technologies. The present review focuses the recent advances made in the development of transgenic crop plants of commercial importance with enhanced tolerance to abiotic stress; also the future prospects of stress tolerant crops have also been discussed.
引用
收藏
页码:24 / 39
页数:16
相关论文
共 50 条
  • [1] Genetic engineering for abiotic stress resistance in crop plants
    Zhang, JX
    Klueva, NY
    Wang, Z
    Wu, R
    Ho, THD
    Nguyen, HT
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2000, 36 (02) : 108 - 114
  • [2] Genetic engineering for abiotic stress resistance in crop plants
    Jingxian Zhang
    Natalya Y. Klueva
    Z. Wang
    Ray Wu
    Tuan-Hua David Ho
    Henry T. Nguyen
    In Vitro Cellular & Developmental Biology - Plant, 2000, 36 : 108 - 114
  • [3] Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
    Wani, Shabir H.
    Kumar, Vinay
    Shriram, Varsha
    Sah, Saroj Kumar
    CROP JOURNAL, 2016, 4 (03): : 162 - 176
  • [4] Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
    Shabir H.Wani
    Vinay Kumar
    Varsha Shriram
    Saroj Kumar Sah
    The Crop Journal, 2016, 4 (03) : 162 - 176
  • [5] Light Stress Responses and Prospects for Engineering Light Stress Tolerance in Crop Plants
    Bo Yang
    Jie Tang
    Zhihui Yu
    Tushar Khare
    Amrita Srivastav
    Sagar Datir
    Vinay Kumar
    Journal of Plant Growth Regulation, 2019, 38 : 1489 - 1506
  • [6] Light Stress Responses and Prospects for Engineering Light Stress Tolerance in Crop Plants
    Yang, Bo
    Tang, Jie
    Yu, Zhihui
    Khare, Tushar
    Srivastav, Amrita
    Datir, Sagar
    Kumar, Vinay
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (04) : 1489 - 1506
  • [7] Abiotic stress and crop genetic engineering
    Angrish, R
    Datta, KS
    CURRENT SCIENCE, 2001, 80 (05): : 606 - 606
  • [8] Engineering Pathogen Resistance in Crop Plants: Current Trends and Future Prospects
    Collinge, David B.
    Jorgensen, Hans J. L.
    Lund, Ole S.
    Lyngkjaer, Michael F.
    ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 48, 2010, 48 : 269 - 291
  • [9] Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing
    Rahman, Mehboob-ur
    Zulfiqar, Sana
    Raza, Muhammad Ahmad
    Ahmad, Niaz
    Zhang, Baohong
    CELLS, 2022, 11 (22)
  • [10] Melatonin and Abiotic Stress Tolerance in Crop Plants
    Colombage, Roshira
    Singh, Mohan B.
    Bhalla, Prem L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)