A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes

被引:71
|
作者
Yu, Yongxiang [1 ,2 ,3 ]
Zhang, Yanxia [3 ]
Xiao, Mao [3 ]
Zhao, Chengyi [4 ]
Yao, Huaiying [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, 1799 Jimei Rd, Xiamen 361021, Peoples R China
[2] Chinese Acad Sci, Zhejiang Key Lab Urban Environm Proc & Pollut Con, Ningbo Urban Environm Observat & Res Stn, 88 Zhongke Rd, Ningbo 315800, Peoples R China
[3] Wuhan Inst Technol, Sch Environm Ecol & Biol Engn, Res Ctr Environm Ecol & Engn, 206 Guanggu 1st Rd, Wuhan 430205, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Land Sci Res Ctr, Sch Geog Sci, 219 Ningliu Rd, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Plastic film; Soil carbon sequestration; Methane; Nitrous oxide; Agricultural field; NITROUS-OXIDE EMISSIONS; DRIP IRRIGATION; RICE PRODUCTION; PLASTIC MULCH; METHANE; FERTILIZATION; WATER; N2O; FIELD; RESPIRATION;
D O I
10.1016/j.catena.2021.105483
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The use of plastic film in agriculture strongly affects the decomposition of soil organic carbon (SOC) and the release of methane (CH4) and nitrous oxide (N2O) by influencing soil biogeochemical processes. However, no systematic conclusions have been reached regarding the effect of plastic film mulching on SOC stocks and greenhouse gas (GHG) budgets. In this study, a meta-analysis compiling data from 150 studies was used to assess the effects of film mulching on SOC and soil GHG fluxes across different agricultural systems. In addition, the net global warming potentials (GWPs) of SOC, CH4 and N2O were calculated with the GWP approach. Plastic film mulching significantly promoted crop yield by 48.6%; did not affect SOC; reduced CH4 emissions from paddy fields by 64.2% and CH4 uptake in uplands by 16.1%; and increased soil N2O emissions by 23.9%. The effect of mulching on SOC and GHG fluxes varied among agricultural systems. Compared with the non-mulched field, the use of plastic film significantly increased SOC and decreased CH4 uptake in rainfed uplands but reduced SOC in irrigated uplands. In paddy fields, this practice significantly reduced the SOC stock and CH4 emissions but increased N2O emissions. Our results suggest that a low coverage ratio (<50%), black film mulching and flat mulching effectively increase SOC levels compared to those in non-mulched fields, and a low coverage ratio, biodegradable film and ridge mulching could mitigate the positive effect of this practice on N2O emissions. Overall, our results suggest that plastic film mulching promotes crop productivity and slightly affects the net GWP in uplands. In paddy fields, this technology appears to be a "win-win" strategy for crop production and GHG mitigation, but additional practices (e.g., biochar application) should be adopted to maintain SOC levels for sustainable development in these fields because it greatly reduces SOC stocks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis
    He, Yanghui
    Zhou, Xuhui
    Jiang, Liling
    Li, Ming
    Du, Zhenggang
    Zhou, Guiyao
    Shao, Junjiong
    Wang, Xihua
    Xu, Zhihong
    Bai, Shahla Hosseini
    Wallace, Helen
    Xu, Chengyuan
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2017, 9 (04): : 743 - 755
  • [2] A meta-analysis of conservation tillage management effects on soil organic carbon sequestration and soil greenhouse gas flux
    Meng, Xuanchen
    Meng, Fanxiang
    Chen, Peng
    Hou, Dingmu
    Zheng, Ennan
    Xu, Tianyu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 954
  • [3] Effects of soil mulching on staple crop yield and greenhouse gas emissions in China: A meta-analysis
    Wei, Huihui
    Zhang, Feng
    Zhang, Kaiping
    Qin, Rongzhu
    Zhang, Wenjuan
    Sun, Guojun
    Huang, Jie
    FIELD CROPS RESEARCH, 2022, 284
  • [4] Effect of soil mulching on agricultural greenhouse gas emissions in China: A meta-analysis
    Guo, Chan
    Liu, Xufei
    PLOS ONE, 2022, 17 (01):
  • [5] Heavy grazing reduces grassland soil greenhouse gas fluxes: A global meta-analysis
    Tang, Shiming
    Wang, Kun
    Xiang, Yangzhou
    Tian, Dashuan
    Wang, Jinsong
    Liu, Yanshu
    Cao, Bo
    Guo, Ding
    Niu, Shuli
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 654 : 1218 - 1224
  • [6] Response of soil greenhouse gas fluxes to warming: A global meta-analysis of field studies
    Yan, Weiming
    Zhong, Yangquanwei
    Shangguan, Zhouping
    Torn, Margaret S.
    GEODERMA, 2022, 419
  • [7] Effects of intercropping on soil greenhouse gas emissions - A global meta-analysis
    Gui, Dongyang
    Zhang, Yuyang
    Lv, Jiyang
    Guo, Jiayi
    Sha, Zhipeng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 918
  • [8] Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis
    Liu, Shuwei
    Zhang, Yaojun
    Zong, Yajie
    Hu, Zhiqiang
    Wu, Shuang
    Zhou, Jie
    Jin, Yaguo
    Zou, Jianwen
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2016, 8 (02): : 392 - 406
  • [9] Warming and altered precipitation rarely alter N addition effects on soil greenhouse gas fluxes: a meta-analysis
    Xinyu Wei
    Fuzhong Wu
    Koenraad Van Meerbeek
    Ellen Desie
    Xiangyin Ni
    Kai Yue
    Petr Heděnec
    Jing Yang
    Nannan An
    Ecological Processes, 12
  • [10] Warming and altered precipitation rarely alter N addition effects on soil greenhouse gas fluxes: a meta-analysis
    Xinyu Wei
    Fuzhong Wu
    Koenraad Van Meerbeek
    Ellen Desie
    Xiangyin Ni
    Kai Yue
    Petr Hednec
    Jing Yang
    Nannan An
    Ecological Processes, 2023, (00) : 778 - 790