Edgeworth approximation for MINPIN estimators in semiparametric regression models

被引:9
作者
Linton, O
机构
关键词
D O I
10.1017/S0266466600006435
中图分类号
F [经济];
学科分类号
02 ;
摘要
We examine the higher order asymptotic properties of semiparametric regression estimators that were obtained by the general MINPIN method described in Andrews (1989, Semiparametric Econometric Models: I. Estimation, Discussion paper 908, Cowles Foundation). We derive an order n(-1) stochastic expansion and give a theorem justifying order n(-1) distributional approximation of the Edgeworth type.
引用
收藏
页码:30 / 60
页数:31
相关论文
共 44 条
[1]  
ANDREWS DKW, 1989, 908 COWL FDN
[2]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[3]   VALIDITY OF FORMAL EDGEWORTH EXPANSION [J].
BHATTACHARYA, RN ;
GHOSH, JK .
ANNALS OF STATISTICS, 1978, 6 (02) :434-451
[4]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[5]   THE EDGEWORTH EXPANSION FOR U-STATISTICS OF DEGREE-2 [J].
BICKEL, PJ ;
GOTZE, F ;
VANZWET, WR .
ANNALS OF STATISTICS, 1986, 14 (04) :1463-1484
[6]  
BICKEL PJ, 1994, EFFICIENT ADAPTIVE I
[7]   AN EDGEWORTH EXPANSION FOR U-STATISTICS [J].
CALLAERT, H ;
JANSSEN, P ;
VERAVERBEKE, N .
ANNALS OF STATISTICS, 1980, 8 (02) :299-312
[8]   ADAPTING FOR HETEROSCEDASTICITY IN LINEAR-MODELS [J].
CARROLL, RJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1224-1233
[9]  
CARROLL RJ, 1989, J ROYAL STAT SOC B, V51, P3
[10]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146