Classification of centers, their cyclicity and isochronicity for a class of polynomial differential systems of degree d ≥ 7 odd

被引:1
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
关键词
LIMIT-CYCLES; INTEGRABILITY;
D O I
10.36045/bbms/1292334061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we classify the centers, the cyclicity of its Hopf bifurcation and the isochronicity of the polynomial differential systems in R(2) of degree d >= 7 odd that in complex notation z = x + iy can be written as (z) over dot = (lambda + i)z + (z (z) over bar)(d-7/2) (Az(6)(z) over bar + Bz(4)(z) over bar (3) + Cz(2)(z) over bar (5) + D (z) over bar (7)), where lambda is an element of R, and A, B, C, D is an element of C.
引用
收藏
页码:859 / 873
页数:15
相关论文
共 50 条