A note on equitable Hamiltonian cycles

被引:0
|
作者
Ophelders, Tim [1 ]
Lambers, Roel [2 ]
Spieksma, Frits C. R. [2 ]
Vredeveld, Tjark [3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[3] Maastricht Univ, Dept Quantitat Econ, Maastricht, Netherlands
基金
美国国家科学基金会;
关键词
Equitable Hamiltonian cycle; Colored complete graphs; Polynomial time algorithm; Local search; PERFECT MATCHINGS EXTEND; PATHS;
D O I
10.1016/j.dam.2020.08.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complete graph with an even number of vertices, and with each edge colored with one of two colors (say red or blue), an equitable Hamiltonian cycle is a Hamiltonian cycle that can be decomposed into two perfect matchings such that both perfect matchings have the same number of red edges. We show that, for any coloring of the edges, in any complete graph on at least 6 vertices, an equitable Hamiltonian cycle exists. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [1] A note on Hamiltonian cycles in planar graphs
    Kreh, Martin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [2] Note on Locating Pairs of Vertices on Hamiltonian Cycles
    Faudree, Ralph J.
    Lehel, Jeno
    Yoshimoto, Kiyoshi
    GRAPHS AND COMBINATORICS, 2014, 30 (04) : 887 - 894
  • [3] Note on Locating Pairs of Vertices on Hamiltonian Cycles
    Ralph J. Faudree
    Jeno Lehel
    Kiyoshi Yoshimoto
    Graphs and Combinatorics, 2014, 30 : 887 - 894
  • [4] EQUITABLE LABELINGS OF CYCLES
    WOJCIECHOWSKI, J
    JOURNAL OF GRAPH THEORY, 1993, 17 (04) : 531 - 547
  • [5] A NOTE ON CYCLES IN LOCALLY HAMILTONIAN AND LOCALLY HAMILTON-CONNECTED GRAPHS
    Tang, Long
    Vumar, Elkin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 77 - 84
  • [6] A Note on Long non-Hamiltonian Cycles in One Class of Digraphs
    Darbinyan, Samvel Kh.
    Karapetyan, Iskandar A.
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [7] A note on long non-hamiltonian cycles in one class of Digraphs
    Darbinyan, Samvel Kh.
    Karapetyan, Iskandar A.
    CSIT 2013 - 9th International Conference on Computer Science and Information Technologies, Revised Selected Papers, 2013,
  • [8] A note on edge-disjoint contractible Hamiltonian cycles in polyhedral maps
    Maity, Dipendu
    Upadhyay, Ashish Kumar
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2014, 2 (02) : 160 - 165
  • [9] A Note on Long non-Hamiltonian Cycles in One Class of Digraphs
    Darbinyan, Samvel Kh.
    Karapetyan, Iskandar A.
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [10] On Hamiltonian cycles and Hamiltonian paths
    Rahman, MS
    Kaykobad, M
    INFORMATION PROCESSING LETTERS, 2005, 94 (01) : 37 - 41