A Posteriori Fractional Tikhonov Regularization Method for the Problem of Analytic Continuation

被引:3
|
作者
Xue, Xuemin [1 ]
Xiong, Xiangtuan [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
numerical analytic continuation; fractional Tikhonov regularization method; ill-posedness; error estimation;
D O I
10.3390/math9182255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the numerical analytic continuation problem is addressed and a fractional Tikhonov regularization method is proposed. The fractional Tikhonov regularization not only overcomes the difficulty of analyzing the ill-posedness of the continuation problem but also obtains a more accurate numerical result for the discontinuity of solution. This article mainly discusses the a posteriori parameter selection rules of the fractional Tikhonov regularization method, and an error estimate is given. Furthermore, numerical results show that the proposed method works effectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A MODIFIED TIKHONOV REGULARIZATION FOR STABLE ANALYTIC CONTINUATION
    Fu, Chu-Li
    Deng, Zhi-Liang
    Feng, Xiao-Li
    Dou, Fang-Fang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2982 - 3000
  • [2] A fractional Landweber iterative regularization method for stable analytic continuation
    Yang, Fan
    Wang, Qianchao
    Li, Xiaoxiao
    AIMS MATHEMATICS, 2021, 6 (01): : 404 - 419
  • [3] Regularization methods for a problem of analytic continuation
    Xiong, Xiangtuan
    Zhu, Liqin
    Li, Ming
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 82 (02) : 332 - 345
  • [4] A Discretized Tikhonov Regularization Method for a Fractional Backward Heat Conduction Problem
    Deng, Zhi-Liang
    Yang, Xiao-Mei
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Connecting Tikhonov regularization to the maximum entropy method for the analytic continuation of quantum Monte Carlo data
    Ghanem, Khaldoon
    Koch, Erik
    PHYSICAL REVIEW B, 2023, 107 (08)
  • [6] A Kind of a Posteriori Parameter Choices for the Iterated Tikhonov Regularization Method
    贺国强
    ChineseScienceBulletin, 1993, (05) : 356 - 360
  • [7] Fractional Tikhonov regularization method in Hilbert scales
    Mekoth, Chitra
    George, Santhosh
    Jidesh, P.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [8] The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem
    Yang, Fan
    Fu, Chu-Li
    Li, Xiao-Xiao
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 219 - 234
  • [9] A KIND OF A POSTERIORI PARAMETER CHOICES FOR THE ITERATED TIKHONOV REGULARIZATION METHOD
    HE, GQ
    CHINESE SCIENCE BULLETIN, 1993, 38 (05): : 356 - 360
  • [10] A modified Tikhonov regularization method for a Cauchy problem of a time fractional diffusion equation
    CHENG Xiao-liang
    YUAN Le-le
    LIANG Ke-wei
    Applied Mathematics:A Journal of Chinese Universities, 2019, 34 (03) : 284 - 308