Rapid and accurate developmental stage recognition of C. elegans from high-throughput image data

被引:8
|
作者
White, Amelia G. [1 ,2 ]
Cipriani, Patricia G. [1 ]
Kao, Huey-Ling [1 ]
Lees, Brandon [1 ]
Geiger, Davi [3 ]
Sontag, Eduardo [2 ,4 ]
Gunsalus, Kristin C. [1 ]
Piano, Fabio [1 ]
机构
[1] NYU, Ctr Genom & Syst Biol, New York, NY 10016 USA
[2] Rutgers State Univ, BioMaPS Inst, Piscataway, NJ 08855 USA
[3] NYU, Dept Comp Sci, New York, NY 10003 USA
[4] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
关键词
CAENORHABDITIS-ELEGANS; BEHAVIOR; EMBRYOS; RNAI;
D O I
10.1109/CVPR.2010.5540065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a hierarchical principle for object recognition and its application to automatically classify developmental stages of C. elegans animals from a population of mixed stages. The object recognition machine consists of four hierarchical layers, each composed of units upon which evaluation functions output a label score, followed by a grouping mechanism that resolves ambiguities in the score by imposing local consistency constraints. Each layer then outputs groups of units, from which the units of the next layer are derived. Using this hierarchical principle, the machine builds up successively more sophisticated representations of the objects to be classified. The algorithm segments large and small objects, decomposes objects into parts, extracts features from these parts, and classifies them by SVM. We are using this system to analyze phenotypic data from C. elegans high-throughput genetic screens, and our system overcomes a previous bottleneck in image analysis by achieving near real-time scoring of image data. The system is in current use in a functioning C. elegans laboratory and has processed over two hundred thousand images for lab users.
引用
收藏
页码:3089 / 3096
页数:8
相关论文
共 50 条
  • [1] An image analysis toolbox for high-throughput C. elegans assays
    Wahlby, Carolina
    Kamentsky, Lee
    Liu, Zihan H.
    Riklin-Raviv, Tammy
    Conery, Annie L.
    O'Rourke, Eyleen J.
    Sokolnicki, Katherine L.
    Visvikis, Orane
    Ljosa, Vebjorn
    Irazoqui, Javier E.
    Golland, Polina
    Ruvkun, Gary
    Ausubel, Frederick M.
    Carpenter, Anne E.
    NATURE METHODS, 2012, 9 (07) : 714 - U273
  • [2] An image analysis toolbox for high-throughput C. elegans assays
    Carolina Wählby
    Lee Kamentsky
    Zihan H Liu
    Tammy Riklin-Raviv
    Annie L Conery
    Eyleen J O'Rourke
    Katherine L Sokolnicki
    Orane Visvikis
    Vebjorn Ljosa
    Javier E Irazoqui
    Polina Golland
    Gary Ruvkun
    Frederick M Ausubel
    Anne E Carpenter
    Nature Methods, 2012, 9 (7) : 714 - 716
  • [3] High-throughput behavioral analysis in C. elegans
    Swierczek, Nicholas A.
    Giles, Andrew C.
    Rankin, Catharine H.
    Kerr, Rex A.
    NATURE METHODS, 2011, 8 (07) : 592 - U112
  • [4] High-throughput behavioral analysis in C. elegans
    Swierczek N.A.
    Giles A.C.
    Rankin C.H.
    Kerr R.A.
    Nature Methods, 2011, 8 (7) : 592 - 602
  • [5] C. elegans in high-throughput drug discovery
    O'Reilly, Linda P.
    Luke, Cliff J.
    Perlmutter, David H.
    Silverman, Gary A.
    Pak, Stephen C.
    ADVANCED DRUG DELIVERY REVIEWS, 2014, 69 : 247 - 253
  • [6] TRACKING C. ELEGANS SWIMMING FOR HIGH-THROUGHPUT PHENOTYPING
    Restif, Christophe
    Ibanez-Ventoso, Carolina
    Driscoll, Monica
    Metaxas, Dimitris
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1542 - 1548
  • [7] High-throughput screening in the C. elegans nervous system
    Kinser, Holly E.
    Pincus, Zachary
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2017, 80 : 192 - 197
  • [8] The C. elegans Observatory: High-throughput exploration of behavioral aging
    Kerr, Rex A.
    Roux, Antoine E.
    Goudeau, Jerome
    Kenyon, Cynthia
    FRONTIERS IN AGING, 2022, 3
  • [9] Toolkits for detailed and high-throughput interrogation of synapses in C. elegans
    Majeed, Maryam
    Han, Haejun
    Zhang, Keren
    Cao, Wen Xi
    Liao, Chien-Po
    Hobert, Oliver
    Lu, Hang
    ELIFE, 2024, 12
  • [10] DevStaR: High-Throughput Quantification of C-elegans Developmental Stages
    White, Amelia G.
    Lees, Brandon
    Kao, Huey-Ling
    Cipriani, P. Giselle
    Munarriz, Eliana
    Paaby, Annalise B.
    Erickson, Katherine
    Guzman, Sherly
    Rattanakorn, Kirk
    Sontag, Eduardo
    Geiger, Davi
    Gunsalus, Kristin C.
    Piano, Fabio
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (10) : 1791 - 1803