Random regression models using different functions to estimate genetic parameters for milk production in Holstein Friesians

被引:3
|
作者
Dornelles, Mariana de Almeida [1 ]
Nogara Rorato, Paulo Roberto [1 ]
Lavadinho da Gama, Luis Telo [2 ]
Breda, Fernanda Cristina [1 ]
Bondan, Carlos [3 ]
Everling, Dioneia Magda [4 ]
Michelotti, Vanessa Tomazetti [1 ]
Feltes, Giovani Luis [1 ]
机构
[1] Univ Fed Santa Maria, CCR, Dept Zootecnia, Ave Roraima 1000, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Tecn Lisboa, Lisbon, Portugal
[3] Univ Passo Fundo, Serv Anal Rebanhos Leiteiros, Ctr Pesquisa Alimentacao, Passo Fundo, RS, Brazil
[4] Inst Fed Rio Grande Sul, Ibiruba, RS, Brazil
来源
CIENCIA RURAL | 2016年 / 46卷 / 09期
关键词
Ali and Schaeffer function; classes of residual variance; lactation curve; Legendre polynomials; Wilmink function; 1ST LACTATION; YIELD; COWS; CATTLE; POLYNOMIALS; SELECTION; CURVES;
D O I
10.1590/0103-8478cr20150473
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The objective of this study was to compare the functions of Wilmink and Ali and Schaeffer with Legendre polynomials in random regression models using heterogeneous residual variances for modeling genetic parameters during the first lactation in the Holstein Friesian breed. Five thousand eight hundred and eighty biweekly records of test-day milk production were used. The models included the fixed effects of group of contemporaries and cow age at calving as covariable. Statistical criteria indicated that the WF.33_HE2, LEG.33_HE2, and LEG.55_HE4 functions best described the changes in the variances that occur throughout lactation. Heritability estimates using WF.33_HE2 and LEG.33_HE2 models were similar, ranging from 0.31 to 0.50. The LEG.55_HE4 model diverged from these models, with higher estimates at the beginning of lactation and lower estimates after the 16th fortnight. The LEG55_HE4, among the three better models indicated by the index, is the one with highest number of parameters (14 vs 34) and resulted in lower estimation of residual variance at the beginning and at the end of lactation, but overestimated heritability in the first fortnight and presented a greater difficulty to model genetic and permanent environment correlations among controls. Random regression models that used the Wilmink and Legendre polynomials functions with two residual variance classes appropriately described the genetic variation during lactation of Holstein Friesians reared in Rio Grande do Sul.
引用
收藏
页码:1649 / 1655
页数:7
相关论文
共 50 条
  • [1] Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle
    Cho, C. I.
    Alam, M.
    Choi, T. J.
    Choy, Y. H.
    Choi, J. G.
    Lee, S. S.
    Cho, K. H.
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2016, 29 (05): : 607 - 614
  • [2] Variance Components and Genetic Parameter Estimates Using Random Regression Models on Test Day Milk Yields of Holstein Friesians
    Takma, Cigdem
    Akbas, Yavuz
    KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI, 2009, 15 (04) : 547 - 551
  • [3] Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling
    Cobuci, Jaime Araujo
    Costa, Claudio Napolis
    Braccini Neto, Jose
    de Freitas, Ary Ferreira
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (03): : 557 - 567
  • [4] Estimation of genetic parameters for Holstein cows milk production by random regression
    Dorneles, C. K. P.
    Cobuci, J. A.
    Rorato, P. R. N.
    Weber, T.
    Lopes, J. S.
    Oliveira, H. N.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2009, 61 (02) : 407 - 412
  • [5] Late-Breaking: Using Random Regression Models to Estimate Genetic Parameters for Milk Production Traits under Different Levels of Heat Stress in Canadian Holstein Cattle
    Campos, Ivan
    Baes, Christine F.
    Chud, Tatiane
    Canovas, Angela
    Oliveira, Hinayah R.
    Schenkel, Flavio S.
    JOURNAL OF ANIMAL SCIENCE, 2021, 99 : 178 - 178
  • [6] Variance components and genetic parameters for milk production of Holstein cattle in Antioquia (Colombia) using random regression models
    Herrera, Ana C.
    Munera, Oscar D.
    Ceron-Munoz, Mario F.
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2013, 26 (02) : 90 - 97
  • [7] Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials
    Campolina Diniz Peixoto, Maria Gabriela
    de Abreu Santos, Daniel Jordan
    Aspilcueta Borquis, Rusbel Raul
    Tomita Bruneli, Frank Angelo
    do Carmo Panetto, Joao Claudio
    Tonhati, Humberto
    PESQUISA AGROPECUARIA BRASILEIRA, 2014, 49 (05) : 372 - 383
  • [8] Comparison of Fitting Performance of Random Regression Models to Test Day Milk Yields in Holstein Friesians
    Takma, Cigdem
    Akbas, Yavuz
    KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI, 2009, 15 (02) : 261 - 266
  • [9] Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil
    Bignardi, Annaiza Braga
    El Faro, Lenira
    Cardoso, Vera Lucia
    Machado, Paulo Fernando
    de Albuquerque, Lucia Galvao
    LIVESTOCK SCIENCE, 2009, 123 (01) : 1 - 7
  • [10] Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bos indicus) cows
    Santos, D. J. A.
    Peixoto, M. G. C. D.
    Aspilcueta Borquis, R. R.
    Verneque, R. S.
    Panetto, J. C. C.
    Tonhati, H.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (01) : 143 - 153