A Filtering Approach to Stochastic Variational Inference

被引:0
|
作者
Houlsby, Neil M. T. [1 ]
Blei, David M. [2 ]
机构
[1] Google Res, Zurich, Switzerland
[2] Columbia Univ, Dept Comp Sci, Dept Stat, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic variational inference (SVI) uses stochastic optimization to scale up Bayesian computation to massive data. We present an alternative perspective on SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by batch variational Bayes (VB). We define a model to automate this process. The model infers the location of the next VB optimum from a sequence of noisy realizations. As a consequence of this construction, we update the variational parameters using Bayes rule, rather than a hand-crafted optimization schedule. When our model is a Kalman filter this procedure can recover the original SVI algorithm and SVI with adaptive steps. We may also encode additional assumptions in the model, such as heavy-tailed noise. By doing so, our algorithm outperforms the original SVI schedule and a state-of-the-art adaptive SVI algorithm in two diverse domains.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [2] Stochastic variational inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    1600, Microtome Publishing (14): : 1303 - 1347
  • [3] Accelerated Stochastic Variational Inference
    Hu, Pingbo
    Weng, Yang
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1275 - 1282
  • [4] Structured Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 361 - 369
  • [5] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [6] Smoothed Gradients for Stochastic Variational Inference
    Mandt, Stephan
    Blei, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [7] Stochastic Variational Inference with Gradient Linearization
    Ploetz, Tobias
    Wannenwetsch, Anne S.
    Roth, Stefan
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1566 - 1575
  • [8] Stochastic variational inference for GARCH models
    Xuan H.
    Maestrini L.
    Chen F.
    Grazian C.
    Statistics and Computing, 2024, 34 (1)
  • [9] Variational Inference for Stochastic Differential Equations
    Opper, Manfred
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [10] Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering
    Liu, Jie
    Ye, Zifeng
    Chen, Kun
    Zhang, Panpan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 189