On the nonlinear Schrodinger equations of derivative type

被引:0
|
作者
Ozawa, T
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Cauchy problem both at finite and infinite times for a class of nonlinear Schrodinger equations with coupling of derivative type. The proof uses gauge transformations which reduce the original equations to systems of equations without coupling of derivative type. Concerning the Cauchy problem at finite times, we give sufficient conditions for the global well-posedness in the energy space. Concerning the Cauchy problem at infinity, we construct modified wave operators on small and sufficiently regular asymptotic states.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 50 条
  • [1] DERIVATIVE NONLINEAR SCHRODINGER TYPE EQUATIONS WITH MULTIPLE COMPONENTS AND THEIR SOLUTIONS
    YAJIMA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (06) : 1901 - 1909
  • [2] Complete integrability of derivative nonlinear Schrodinger-type equations
    Tsuchida, T
    Wadati, M
    INVERSE PROBLEMS, 1999, 15 (05) : 1363 - 1373
  • [3] Equivalence relation and bilinear representation for derivative nonlinear Schrodinger type equations
    Lee, JH
    Lin, CK
    Pashaev, OK
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 175 - 181
  • [4] Spectral Curves for the Derivative Nonlinear Schrodinger Equations
    Smirnov, Aleksandr O.
    SYMMETRY-BASEL, 2021, 13 (07):
  • [5] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    INVERSE PROBLEMS, 2022, 38 (06)
  • [6] Integrable discretizations of derivative nonlinear Schrodinger equations
    Tsuchida, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7827 - 7847
  • [7] ON A CLASS OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE EQUATIONS IN TWO SPATIAL DIMENSIONS
    Arbunich, Jack
    Klein, Christian
    Sparber, Christof
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1477 - 1505
  • [8] Stability of Algebraic Solitons for Nonlinear Schrodinger Equations of Derivative Type: Variational Approach
    Hayashi, Masayuki
    ANNALES HENRI POINCARE, 2022, 23 (12): : 4249 - 4277
  • [9] FINITE-ENERGY SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS OF DERIVATIVE TYPE
    HAYASHI, N
    OZAWA, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) : 1488 - 1503
  • [10] Structural Resolvent Estimates and Derivative Nonlinear Schrodinger Equations
    Ruzhansky, Michael
    Sugimoto, Mitsuru
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (02) : 281 - 304