On a Class of Nonlinear Singular Riemann-Liouville Fractional Differential Equations

被引:12
|
作者
Luca, Rodica [1 ]
机构
[1] Gh Asachi Tech Univ, Dept Math, 11 Blvd Carol I, Iasi 700506, Romania
关键词
Riemann-Liouville fractional differential equation; integral boundary conditions; positive solutions; existence; multiplicity; POSITIVE SOLUTIONS; COUPLED SYSTEM; EXISTENCE; UNIQUENESS;
D O I
10.1007/s00025-018-0887-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the Guo-Krasnosel'skii fixed point theorem and some height functions defined on special bounded sets, we investigate the existence and multiplicity of positive solutions for a class of nonlinear singular Riemann-Liouville fractional differential equations with sign-changing nonlinearities, subject to Riemann-Stieltjes boundary conditions which contain fractional derivatives.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On a Class of Nonlinear Singular Riemann–Liouville Fractional Differential Equations
    Rodica Luca
    Results in Mathematics, 2018, 73
  • [2] Spectral collocation method for nonlinear Riemann-Liouville fractional differential equations
    Gu, Zhendong
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 654 - 669
  • [3] THE MULTIPLICITY SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE
    Ma, Tianfu
    Yan, Baoqiang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 801 - 818
  • [4] The Multiplicity Solutions for Nonlinear Fractional Differential Equations of Riemann-Liouville Type
    Tianfu Ma
    Baoqiang Yan
    Fractional Calculus and Applied Analysis, 2018, 21 : 801 - 818
  • [5] The Nehari Manifold for a Class of Singular ψ-Riemann-Liouville Fractional with p-Laplacian Operator Differential Equations
    Horrigue, Samah
    Alsulami, Mona
    Alsaeedi, Bayan Abduallah
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (05) : 1104 - 1120
  • [6] Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative
    Bakkyaraj, T.
    Sahadevan, R.
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 447 - 455
  • [7] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Boundary Value Problems, 2014
  • [8] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [9] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [10] Impulsive Multiorders Riemann-Liouville Fractional Differential Equations
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015