Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting

被引:30
|
作者
Gu, Yawei [1 ]
Forget, Aurelien [1 ]
Shastri, V. Prasad [1 ,2 ]
机构
[1] Univ Freiburg, Inst Macromol Chem, D-79104 Freiburg, Germany
[2] Univ Freiburg, Bioss Ctr Biol Signalling Studies, D-79104 Breisgau, Germany
关键词
immunomodulation; instructive bioinks; organotypic vasculature; proregenerative bioinks; standardization; EXTRACELLULAR-MATRIX; TISSUE; HYDROGELS; ALGINATE; AGAROSE; CONSTRUCTS; MECHANOTRANSDUCTION; BIOMATERIALS; ANGIOGENESIS; MACROPHAGES;
D O I
10.1002/advs.202103469
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Engineering bioinks for 3D bioprinting
    Decante, Guy
    Costa, Joao B.
    Silva-Correia, Joana
    Collins, Maurice N.
    Reis, Rui L.
    Oliveira, J. Miguel
    BIOFABRICATION, 2021, 13 (03)
  • [2] Bioinks for 3D bioprinting: an overview
    Gungor-Ozkerim, P. Selcan
    Inci, Ilyas
    Zhang, Yu Shrike
    Khademhosseini, Ali
    Dokmeci, Mehmet Remzi
    BIOMATERIALS SCIENCE, 2018, 6 (05) : 915 - 946
  • [3] Collagen Bioinks for 3D Bioprinting
    Bagley, B.
    TISSUE ENGINEERING PART A, 2017, 23 : S57 - S57
  • [4] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    Acta Biomaterialia, 2022, 151 : 45 - 69
  • [5] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    ACTA BIOMATERIALIA, 2022, 151 : 45 - 69
  • [6] Functionalizing bioinks for 3D bioprinting applications
    Parak, Azraa
    Pradeep, Priyamvada
    du Toit, Lisa C.
    Kumar, Pradeep
    Choonara, Yahya E.
    Pillay, Viness
    DRUG DISCOVERY TODAY, 2019, 24 (01) : 198 - 205
  • [7] Natural and Synthetic Bioinks for 3D Bioprinting
    Khoeini, Roghayeh
    Nosrati, Hamed
    Akbarzadeh, Abolfazl
    Eftekhari, Aziz
    Kavetskyy, Taras
    Khalilov, Rovshan
    Ahmadian, Elham
    Nasibova, Aygun
    Datta, Pallab
    Roshangar, Leila
    Deluca, Dante C.
    Davaran, Soodabeh
    Cucchiarini, Magali
    Ozbolat, Ibrahim T.
    ADVANCED NANOBIOMED RESEARCH, 2021, 1 (08):
  • [8] Nanocellulosic materials as bioinks for 3D bioprinting
    Piras, Carmen C.
    Fernandez-Prieto, Susana
    De Borggraeve, Wim M.
    BIOMATERIALS SCIENCE, 2017, 5 (10) : 1988 - 1992
  • [9] Recent Advances in Engineering Bioinks for 3D Bioprinting
    Wang, Haonan
    Bi, Shihao
    Shi, Bingbing
    Ma, Junchi
    Lv, Xiangwei
    Qiu, Jianfeng
    Wei, Yunyun
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (19)
  • [10] 3D Bioprinting of Tissue Models with Customized Bioinks
    Vurat, Murat Taner
    Ergun, Can
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    BIOINSPIRED BIOMATERIALS: ADVANCES IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 1249 : 67 - 84