Actinobacteria include several ubiquitous members involved in the synthesis of multipurpose bioactive compounds strictly derived from the genus Streptomyces. Nevertheless, new bacterial consortia based on non-streptomycetes actinobacteria are needed to be explored in order to avoid rediscoveries and minimize the development of insecticide resistance in Aedes aegypti. In accordance with the use of eco-friendly bioagents, in this study biofilm-forming actinobacteria were characterized on the basis of assessment their growth dynamics, larvicidal mortality and sublethal effects. Actinobacteria identification, biofilm growth and larvicidal bioactivities were performed by employing bacterial cultures, photomicrograph-based image analysis and bioassays. Bacterial morphotypes belong to Pseudonocardiaceae (PsA1TA) and Corynebacteriaceae (CoA2CA), which showed a distinctly substrate-dependent growth. PsA1TA microcolonies were randomly distributed on abdominal and thoracic membranous epicuticle. Afterwards, the thickness of monoand bi-layered biofilms were increased fourfold the larval thoracoabdominal width (infectious breadth, 1010 mu m - 1036 mu m). In contrast, cephalic and anal sclerotized structures were radially encased by CoA2CA biofilms and increased threefold the size of both structures (infectious breadth, 1820 - 2030 mu m y 1650 - 1860 mu m, respectively). Although biofilms caused dissimilar mortality rates on the four larval instars, PsA1TA exerted highest larvicidal activity and virulence on second instar larvae (58 %-96 hours, LT50: 3.4 days) y CoA2CA on fourth instar larvae (85 %-96 hours, LT50: 2.5 days). CoA2CA also induced incomplete release of pharate individuals as well as buckled protruding tarsi in newly emergent adults, whilst larval cadavers were overwhelmingly encased within massive biofilm aggregates. Biofilm-forming actinobacteria performed biolarvicidal activity and sublethal responses in A. aegypti.