On partially ordered semigroups and an abstract set-difference

被引:1
|
作者
Pallaschke, D. [1 ]
Przybycien, H. [2 ]
Urbanski, R. [2 ]
机构
[1] Univ Karlsruhe, Inst Stat & Math Wirschaftstheorie, D-76128 Karlsruhe, Germany
[2] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 2-3期
关键词
convex analysis; pairs of compact convex sets; semi-groups;
D O I
10.1007/s11228-008-0071-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the independence of a system of five axioms (S1)(S5), which was proposed in the book of Pallaschke and Urbanski (Pairs of Compact Convex Sets, vol. 548, Kluwer Academic Publishers, Dordrecht, 2002) for partially ordered commutative semigroups. These five axioms (S1)-(S5) are stated in the introduction below. A partially ordered commutative semigroup satisfying these axioms is called a F-semigroup. By the use of a further axiom (S6) we define an abstract difference for the elements of a F-semigroup and prove some basic properties. The most interesting example of a F-semigroup are the nonempty compact convex sets of a topological vector space endowed with the Minkowski sum as operation and the inclusion as partial order. In Section 4 we apply the abstract difference to the problem of minimality of convex fractions.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 50 条
  • [1] On Partially Ordered Semigroups and an Abstract Set-Difference
    D. Pallaschke
    H. Przybycień
    R. Urbański
    Set-Valued Analysis, 2008, 16 : 257 - 265
  • [2] A GENERALIZATION OF SET-DIFFERENCE
    Vitolo, Paolo
    MATHEMATICA SLOVACA, 2011, 61 (06) : 835 - 850
  • [3] Bayesian models for prediction of the set-difference in volleyball
    Ntzoufras, Ioannis
    Palaskas, Vasilis
    Drikos, Sotiris
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2021, 32 (04) : 491 - 518
  • [4] ON HOMOMORPHISMS OF PARTIALLY ORDERED SEMIGROUPS
    MCFADDEN, R
    ACTA SCIENTIARUM MATHEMATICARUM, 1967, 28 (3-4): : 241 - &
  • [5] COMPLETIONS FOR PARTIALLY ORDERED SEMIGROUPS
    ERNE, M
    REICHMAN, JZ
    SEMIGROUP FORUM, 1987, 34 (03) : 253 - 285
  • [7] Structure of partially ordered cyclic semigroups
    Drewniak, J
    Sobera, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (04) : 777 - 791
  • [8] PARTIALLY ORDERED, COMPLETELY SIMPLE SEMIGROUPS
    BEHRENS, EA
    JOURNAL OF ALGEBRA, 1972, 23 (03) : 413 - &
  • [9] REDUCED INVERSE AND PARTIALLY ORDERED SEMIGROUPS
    OCARROLL, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (DEC): : 293 - 301
  • [10] Structure of Partially Ordered Cyclic Semigroups
    Jósef Drewniak
    Jolanta Sobera
    Czechoslovak Mathematical Journal, 2003, 53 : 777 - 791