T(T)over-bar deformation in SCFTs and integrable supersymmetric theories

被引:1
|
作者
Ebert, Stephen [1 ]
Sun, Hao-Yu [2 ,3 ,4 ]
Sun, Zhengdi [5 ]
机构
[1] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
[2] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[5] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
来源
关键词
Conformal Field Theory; Integrable Field Theories; Superspaces; THERMODYNAMIC BETHE-ANSATZ; SCATTERING; EQUATIONS; ANOMALIES; MATRICES; MODELS; RSOS;
D O I
10.1007/JHEP09(2021)082
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the S-multiplets for two-dimensional Euclidean N = (0, 2) and N = (2, 2) superconformal field theories under the T (T) over bar deformation at leading order of perturbation theory in the deformation coupling. Then, from these N = (0, 2) deformed multiplets, we calculate two- and three-point correlators. We show the N = (0, 2) chiral ring's elements do not flow under the T (T) over bar deformation. Specializing to integrable supersymmetric seed theories, such as N = (2, 2) Landau-Ginzburg models, we use the thermodynamic Bethe ansatz to study the S-matrices and ground state energies. From both an S-matrix perspective and Melzer's folding prescription, we show that the deformed ground state energy obeys the inviscid Burgers' equation. Finally, we show that several indices independent of D-term perturbations including the Witten index, Cecotti-Fendley-Intriligator-Vafa index and elliptic genus do not flow under the T (T) over bar deformation.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] The correlation function of (1,1) and (2,2) supersymmetric theories with T(T)over-bar deformation
    He, Song
    Sun, Jia-Rui
    Sun, Yuan
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (04):
  • [2] T(T)over-bar deformations of supersymmetric quantum mechanics
    Ebert, Stephen
    Ferko, Christian
    Sun, Hao-Yu
    Sun, Zhengdi
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (08):
  • [3] T(T)over-bar Deformations and Integrable Spin Chains
    Marchetto, Enrico
    Sfondrini, Alessandro
    Yang, Zhou
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [4] Evidence for t(t)over-barγ production and measurement of σt(t)over-barγ/σt(t)over-bar
    Aaltonen, T.
    Alvarez Gonzalez, B.
    Amerio, S.
    Amidei, D.
    Anastassov, A.
    Annovi, A.
    Antos, J.
    Apollinari, G.
    Appel, J. A.
    Apresyan, A.
    Arisawa, T.
    Artikov, A.
    Asaadi, J.
    Ashmanskas, W.
    Auerbach, B.
    Aurisano, A.
    Azfar, F.
    Badgett, W.
    Barbaro-Galtieri, A.
    Barnes, V. E.
    Barnett, B. A.
    Barria, P.
    Bartos, P.
    Bauce, M.
    Bauer, G.
    Bedeschi, F.
    Beecher, D.
    Behari, S.
    Bellettini, G.
    Bellinger, J.
    Benjamin, D.
    Beretvas, A.
    Bhatti, A.
    Binkley, M.
    Bisello, D.
    Bizjak, I.
    Bland, K. R.
    Blumenfeld, B.
    Bocci, A.
    Bodek, A.
    Bortoletto, D.
    Boudreau, J.
    Boveia, A.
    Brau, B.
    Brigliadori, L.
    Brisuda, A.
    Bromberg, C.
    Brucken, E.
    Bucciantonio, M.
    Budagov, J.
    PHYSICAL REVIEW D, 2011, 84 (03):
  • [5] T(T)over-bar deformation of correlation functions
    Cardy, John
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (12):
  • [6] Entanglement Entropy and T(T)over-bar Deformation
    Donnelly, William
    Shyam, Vasudev
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [7] T(T)over-bar deformation of random matrices
    Rosso, Felipe
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [8] T(T)over-bar, J(T)over-bar, T(J)over-bar and string theory
    Chakraborty, Soumangsu
    Giveon, Amit
    Kutasov, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (38)
  • [9] TsT, black holes, and T(T)over-bar + J(T)over-bar + T(J)over-bar
    Apolo, Luis
    Song, Wei
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (04):
  • [10] Path integral optimization for T(T)over-bar deformation
    Jafari, Ghadir
    Naseh, Ali
    Zolfi, Hamed
    PHYSICAL REVIEW D, 2020, 101 (02)