Partitions, rooks, and symmetric functions in noncommuting variables

被引:0
|
作者
Can, Mahir Bilen [1 ]
Sagan, Bruce E. [2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 02期
关键词
noncommuting variables; rook; set partition; symmetric function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let II(n) denote the set of all set partitions of {1,2, ... ,n}. We consider two subsets of II(n), one connected to rook theory and one associated with symmetric functions in noncommuting variables. Let E(n) subset of II(n) be the subset of all partitions corresponding to an extendable rook (placement) on the upper-triangular board, T(n-1). Given pi is an element of II(m) and sigma is an element of II(n), define their slash product to be pi/sigma = pi boolean OR(sigma+m) is an element of II(m+n) where sigma + m is the partition obtained by adding m to every element of every block of sigma. Call tau atomic if it cannot be written as a nontrivial slash product and let An subset of II(n) denote the subset of atomic partitions. Atomic partitions were first defined by Bergeron, Hohlweg, Rosas, and Zabrocki during their study of NCSym, the symmetric functions in noncommuting variables. We show that, despite their very different definitions, E(n) = A(n) for all n >= 0. Furthermore, we put an algebra structure on the formal vector space generated by all rook placements on upper triangular boards which makes it isomorphic to NCSym. We end with some remarks.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Symmetric functions in noncommuting variables
    Rosas, MH
    Sagan, BE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (01) : 215 - 232
  • [2] Symmetric functions of two noncommuting variables
    Agler, J.
    Young, N. J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5709 - 5732
  • [3] Symmetric functions in noncommuting variables in superspace
    Arcis, Diego
    Gonzalez, Camilo
    Marquez, Sebastian
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [4] Chromatic symmetric functions in noncommuting variables revisited
    Dahlberg, Samantha
    van Willigenburg, Stephanie
    ADVANCES IN APPLIED MATHEMATICS, 2020, 112
  • [5] The primitives and antipode in the Hopf algebra of symmetric functions in noncommuting variables
    Lauve, Aaron
    Mastnak, Mitja
    ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (03) : 536 - 544
  • [6] Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras
    Aguiar, Marcelo
    Andre, Carlos
    Benedetti, Carolina
    Bergeron, Nantel
    Chen, Zhi
    Diaconis, Persi
    Hendrickson, Anders
    Hsiao, Samuel
    Isaacs, I. Martin
    Jedwab, Andrea
    Johnson, Kenneth
    Karaali, Gizem
    Lauve, Aaron
    Le, Tung
    Lewis, Stephen
    Li, Huilan
    Magaard, Kay
    Marberg, Eric
    Novelli, Jean-Christophe
    Pang, Amy
    Saliola, Franco
    Tevlin, Lenny
    Thibon, Jean-Yves
    Thiem, Nathaniel
    Venkateswaran, Vidya
    Vinroot, C. Ryan
    Yan, Ning
    Zabrocki, Mike
    ADVANCES IN MATHEMATICS, 2012, 229 (04) : 2310 - 2337
  • [7] FUNCTIONS OF SEVERAL NONCOMMUTING VARIABLES
    TAYLOR, JL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 1 - 34
  • [8] A Chromatic Symmetric Function in Noncommuting Variables
    David D. Gebhard
    Bruce E. Sagan
    Journal of Algebraic Combinatorics, 2001, 13 : 227 - 255
  • [9] Schur functions in noncommuting variables
    Aliniaeifard, Farid
    Li, Shu Xiao
    van Willigenburg, Stephanie
    ADVANCES IN MATHEMATICS, 2022, 406
  • [10] A chromatic symmetric function in noncommuting variables
    Gebhard, DD
    Sagan, BE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 13 (03) : 227 - 255