Selective Catalytic Reduction Operation with Heavy Fuel Oil: NOx NH3, and Particle Emissions

被引:38
|
作者
Lehtoranta, Kati [1 ]
Vesala, Hannu [1 ]
Koponen, Paivi [1 ]
Korhonen, Satu [2 ]
机构
[1] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
[2] Wartsila Finland Oy, FI-00531 Helsinki, Finland
关键词
MARINE DIESEL-ENGINE; STATIONARY APPLICATIONS; PARTICULATE-EMISSIONS; SHIP EMISSIONS; SCR; DECOMPOSITION; AMMONIA; EXHAUST; IMPACT; UREA;
D O I
10.1021/es506185x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 degrees C NOx reduction was 8590%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.
引用
收藏
页码:4735 / 4741
页数:7
相关论文
共 50 条
  • [1] Investigation of selective catalytic reduction of NOX with NH3
    Qu, Hongxia
    Zhong, Qin
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2002, 26 (01): : 68 - 71
  • [2] Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles
    Liu, Fudong
    Shan, Wenpo
    Pan, Dawei
    Li, Tengying
    He, Hong
    CHINESE JOURNAL OF CATALYSIS, 2014, 35 (09) : 1438 - 1445
  • [3] Enhanced NH3 Selective Catalytic Reduction for NOx Abatement
    Forzatti, Pio
    Nova, Isabella
    Tronconi, Enrico
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (44) : 8366 - 8368
  • [4] The use of ceria for the selective catalytic reduction of NOx with NH3
    Shan, Wenpo
    Liu, Fudong
    Yu, Yunbo
    He, Hong
    CHINESE JOURNAL OF CATALYSIS, 2014, 35 (08) : 1251 - 1259
  • [5] Mechanism reduction of selective non-catalytic reduction of NOx by NH3
    Li, Wei-Cheng
    Li, Zhen-Shan
    Cai, Ning-Sheng
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (09): : 1615 - 1619
  • [6] Recent advances in zeolites for the selective catalytic reduction of NOx with NH3
    Duan, Chaomin
    Zhang, Yan
    Han, Shichao
    Shan, Yulong
    Du, Jinpeng
    Wang, Meng
    Shan, Wenpo
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2024,
  • [7] Diesel Soot Catalyzes the Selective Catalytic Reduction of NOx with NH3
    Max Mehring
    Martin Elsener
    Oliver Kröcher
    Topics in Catalysis, 2013, 56 : 440 - 445
  • [9] Diesel Soot Catalyzes the Selective Catalytic Reduction of NOx with NH3
    Mehring, Max
    Elsener, Martin
    Kroecher, Oliver
    TOPICS IN CATALYSIS, 2013, 56 (1-8) : 440 - 445
  • [10] Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature
    Shan, Wenpo
    Song, Hua
    CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (09) : 4280 - 4288