Robust Portfolio Optimization with Multi-Factor Stochastic Volatility

被引:11
|
作者
Yang, Ben-Zhang [1 ]
Lu, Xiaoping [2 ]
Ma, Guiyuan [3 ]
Zhu, Song-Ping [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Peoples R China
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
[3] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
关键词
Robust portfolio selection; Multi-factor volatility; Jump risks; Non-affine stochastic volatility; Ambiguity effect; CLOSED-FORM SOLUTION; OPTIMAL INVESTMENT; ASSET ALLOCATION; JUMP-RISK; OPTIONS; CHOICE; MODEL; COVARIANCE; RETURNS;
D O I
10.1007/s10957-020-01687-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies a robust portfolio optimization problem under a multi-factor volatility model. We derive optimal strategies analytically under the worst-case scenario with or without derivative trading in complete and incomplete markets and for assets with jump risk. We extend our study to the case with correlated volatility factors and propose an analytical approximation for the robust optimal strategy. To illustrate the effects of ambiguity, we compare our optimal robust strategy with the strategies that ignore the information of uncertainty, and provide the welfare analysis. We also discuss how derivative trading affects the optimal strategies. Finally, numerical experiments are provided to demonstrate the behavior of the optimal strategy and the utility loss.
引用
收藏
页码:264 / 298
页数:35
相关论文
共 50 条
  • [1] Robust Portfolio Optimization with Multi-Factor Stochastic Volatility
    Ben-Zhang Yang
    Xiaoping Lu
    Guiyuan Ma
    Song-Ping Zhu
    Journal of Optimization Theory and Applications, 2020, 186 : 264 - 298
  • [2] International portfolio choice under multi-factor stochastic volatility
    Escobar-Anel, Marcos
    Ferrando, Sebastian
    Gschnaidtner, Christoph
    Rubtsov, Alexey
    QUANTITATIVE FINANCE, 2022, 22 (06) : 1193 - 1216
  • [3] Dynamic portfolio optimization under multi-factor model in stochastic markets
    Zhiping Chen
    Zhenxia Song
    OR Spectrum, 2012, 34 : 885 - 919
  • [4] Dynamic portfolio optimization under multi-factor model in stochastic markets
    Chen, Zhiping
    Song, Zhenxia
    OR SPECTRUM, 2012, 34 (04) : 885 - 919
  • [5] Optimal investment under multi-factor stochastic volatility
    Escobar, Marcos
    Ferrando, Sebastian
    Rubtsov, Alexey
    QUANTITATIVE FINANCE, 2017, 17 (02) : 241 - 260
  • [6] Efficient simulation of a multi-factor stochastic volatility model
    Goencue, Ahmet
    Oekten, Giray
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 329 - 335
  • [7] On the multi-dimensional portfolio optimization with stochastic volatility
    Kufakunesu, Rodwell
    QUAESTIONES MATHEMATICAE, 2018, 41 (01) : 27 - 40
  • [8] ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY
    Cao, Jiling
    Peng, Beidi
    Zhang, Wenjun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1153 - 1170
  • [9] Stochastic Volatility and Dependency in Energy Markets: Multi-Factor Modelling
    Benth, Fred Espen
    PARIS-PRINCETON LECTURES ON MATHEMATICAL FINANCE 2013, 2013, 2081 : 109 - 167
  • [10] PORTFOLIO OPTIMIZATION AND STOCHASTIC VOLATILITY ASYMPTOTICS
    Fouque, Jean-Pierre
    Sircar, Ronnie
    Zariphopoulou, Thaleia
    MATHEMATICAL FINANCE, 2017, 27 (03) : 704 - 745