Resting-state functional connectivity of the rat brain

被引:162
|
作者
Pawela, Christopher P. [1 ]
Biswal, Bharat B. [2 ]
Cho, Younghoon R. [3 ]
Kao, Dennis S. [3 ]
Li, Rupeng [1 ]
Jones, Seth R. [3 ]
Schulte, Marie L. [4 ]
Matloub, Hani S. [3 ]
Hudetz, Anthony G. [4 ]
Hyde, James S. [1 ]
机构
[1] Med Coll Wisconsin, Dept Biophys, Milwaukee, WI 53226 USA
[2] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Radiol, Newark, NJ 07103 USA
[3] Med Coll Wisconsin, Dept Plast Surg, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Dept Anesthesiol, Milwaukee, WI 53226 USA
关键词
BOLD resting-state signal; rat fMRI; visual system; sensorimotor system; functional connectivity MRI (fcMRI);
D O I
10.1002/mrm.21524
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ations in blood oxygen level dependent (BOLD) MRI contrast at 9.4T in lightly anesthetized resting rat brain are formed, and correlation coefficients between time course pairs are interpreted as measures of connectivity. A hierarchy of regional pairwise correlation coefficients (RPCCs) is observed, with the highest values found in the thalamus and cortex, both intra- and interhemisphere, and lower values between the cortex and thalamus. Independent sensory networks are distinguished by two methods: data driven, where task activation defines regions of interest (ROI), and hypothesis driven, where regions are defined by the rat histological atlas. Success in these studies is attributed in part to the use of medetomidine hydrochloride (Domitor) for anesthesia. Consistent results in two different rat-brain systems, the sensorimotor and visual, strongly support the hypothesis that resting-state BOLD fluctuations are conserved across mammalian species and can be used to map brain systems.
引用
收藏
页码:1021 / 1029
页数:9
相关论文
共 50 条
  • [1] Resting-state functional connectivity of the brain
    Liu, Thomas
    FASEB JOURNAL, 2014, 28 (01):
  • [2] Anticorrelated resting-state functional connectivity in awake rat brain
    Liang, Zhifeng
    King, Jean
    Zhang, Nanyin
    NEUROIMAGE, 2012, 59 (02) : 1190 - 1199
  • [3] Mapping thalamocortical networks in rat brain using resting-state functional connectivity
    Liang, Zhifeng
    Li, Tao
    King, Jean
    Zhang, Nanyin
    NEUROIMAGE, 2013, 83 : 237 - 244
  • [4] Resting-state functional connectivity in normal brain aging
    Ferreira, Luiz Kobuti
    Busatto, Geraldo F.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2013, 37 (03): : 384 - 400
  • [5] Modulatory Interactions of Resting-State Brain Functional Connectivity
    Di, Xin
    Biswal, Bharat B.
    PLOS ONE, 2013, 8 (08):
  • [6] Multifractal Dynamic Functional Connectivity in the Resting-State Brain
    Racz, Frigyes Samuel
    Stylianou, Orestis
    Mukli, Peter
    Eke, Andras
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [7] Resting-State Functional Connectivity Analyses: Brain Functional Reorganization in a Rat Model of Postherpetic Neuralgia
    Han, Shuting
    Wu, Guanzuan
    Wei, Xiang
    Meng, Xiaowen
    Zang, Fengchao
    Shen, Lan
    Dai, Hui
    Wang, Lina
    Li, Yonggang
    BRAIN SCIENCES, 2022, 12 (08)
  • [8] Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
    Crenshaw, Donna G.
    Asin, Karen
    Gottschalk, William K.
    Liang, Zhifeng
    Zhang, Nanyin
    Roses, Allen D.
    PLOS ONE, 2015, 10 (02):
  • [9] Resting-state functional connectivity and motor imagery brain activation
    Saiote, Catarina
    Tacchino, Andrea
    Brichetto, Giampaolo
    Roccatagliata, Luca
    Bommarito, Giulia
    Cordano, Christian
    Battaglia, Mario Alberto
    Mancardi, Giovanni Luigi
    Inglese, Matilde
    HUMAN BRAIN MAPPING, 2016, 37 (11) : 3847 - 3857
  • [10] Dynamic brain functional connectivity modulated by resting-state networks
    Di, Xin
    Biswal, Bharat B.
    BRAIN STRUCTURE & FUNCTION, 2015, 220 (01): : 37 - 46