Some compatible Poisson structures and integrable bi-Hamiltonian systems on four dimensional and nilpotent six dimensional symplectic real Lie groups

被引:2
|
作者
Abedi-Fardad, Jafar [1 ]
Rezaei-Aghdam, Adel [2 ]
Haghighatdoost, Ghorbanali [3 ]
机构
[1] Univ Bonab, Dept Math, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Phys, Tabriz 53714161, Iran
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 53714161, Iran
关键词
Integrable bi-Hamiltonian system; Compatible Poisson structures; Symplectic Lie group; ALGEBRAS; SO(4); SINGULARITIES;
D O I
10.1080/14029251.2017.1306944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an alternative method for obtaining of compatible Poisson structures on Lie groups by means of the adjoint representations of Lie algebras. In this way we calculate some compatible Poisson structures on four dimensional and nilpotent six dimensional symplectic real Lie groups. Then using Magri-Morosi's theorem we obtain new bi-Hamiltonian systems with four dimensional and nilpotent six dimensional symplectic real Lie groups as phase spaces.
引用
收藏
页码:149 / 170
页数:22
相关论文
共 35 条
  • [1] Some compatible Poisson structures and integrable bi-Hamiltonian systems on four dimensional and nilpotent six dimensional symplectic real Lie groups
    Jafar Abedi-Fardad
    Adel Rezaei-Aghdam
    Ghorbanali Haghighatdoost
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 149 - 170
  • [2] Compatible Poisson Structures and bi-Hamiltonian Systems Related to Low-dimensional Lie Algebras
    Haghighatdoost, Gh
    Abdolhadi-Zangakani, S.
    Abedi-Fardad, J.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2021, 28 (02) : 194 - 204
  • [3] Compatible Poisson Structures and bi-Hamiltonian Systems Related to Low-dimensional Lie Algebras
    Gh. Haghighatdoost
    S. Abdolhadi-Zangakani
    J. Abedi-Fardad
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 194 - 204
  • [4] Integrable Bi-Hamiltonian Systems by Jacobi Structure on Real Three-Dimensional Lie Groups
    Amirzadeh-Fard, H.
    Haghighatdoost, Gh.
    Rezaei-Aghdam, A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1483 - 1509
  • [5] Integrable bi-Hamiltonian systems by Jacobi structure on real three-dimensional Lie groups
    Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz
    53714-161, Iran
    不详
    53714-161, Iran
    不详
    arXiv, 1600,
  • [6] Integrable Bi-Hamiltonian Systems by Jacobi Structure on Real Three-Dimensional Lie Groups
    H. Amirzadeh-Fard
    Gh. Haghighatdoost
    A. Rezaei-Aghdam
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1483 - 1509
  • [7] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [8] Some bi-Hamiltonian Systems and their Separation of Variables on 4-dimensional Real Lie Groups
    Haghighatdoost, Ghorbanali
    Abdolhadi-Zangakani, Salahaddin
    Mahjoubi-Bahman, Rasoul
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (01): : 89 - 105
  • [10] Integrable deformations of Rikitake systems, Lie bialgebras and bi-Hamiltonian structures
    Ballesteros, Angel
    Blasco, Alfonso
    Gutierrez-Sagredo, Ivan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 137